17 research outputs found

    Two families of Rep-like genes that probably originated by interspecies recombination are represented in viral, plasmid, bacterial, and parasitic protozoan

    No full text
    Two families of genes related to, and including, rolling circle replication initiator protein (Rep) genes were defined by sequence similarity and by evidence of intergene family recombination. The Rep genes of circoviruses were the best characterized members of the "RecRep1 family." Other members of the RecRep1 family were Rep-like genes found in the genomes of the Canarypox virus, Entamoeba histolytica, and Giardia duodenalis and in a plasmid, p4M, from the Gram-positive bacterium, Bifidobacterium pseudocatenulatum. The "RecRep2 family" comprised some previously identified Rep-like genes from plasmids of phytoplasmas and similar Rep-like genes from the genomes of Lactobacillus acidophilus, Lactococcus lactis, and Phytoplasma asteris. Both RecRep1 and RecRep2 proteins have a nucleotide-binding domain significantly similar to the helicases (2C proteins) of picorna-like viruses. On the N-terminal side of the nucleotide binding domain, RecRep1 proteins have a domain significantly similar to one found in nanovirus Reps, whereas RecRep2 proteins have a domain significantly similar to one in the Reps of pLS1 plasmids. We speculate that RecRep genes have been transferred from viruses or plasmids to parasitic protozoan and bacterial genomes and that Rep proteins were themselves involved in the original recombination events that generated the ancestral RecRep genes

    Comparative High-Density Microarray Analysis of Gene Expression during Growth of Lactobacillus helveticus in Milk versus Rich Culture Medium

    No full text
    Lactobacillus helveticus CNRZ32 is used by the dairy industry to modulate cheese flavor. The compilation of a draft genome sequence for this strain allowed us to identify and completely sequence 168 genes potentially important for the growth of this organism in milk or for cheese flavor development. The primary aim of this study was to investigate the expression of these genes during growth in milk and MRS medium by using microarrays. Oligonucleotide probes against each of the completely sequenced genes were compiled on maskless photolithography-based DNA microarrays. Additionally, the entire draft genome sequence was used to produce tiled microarrays in which noninterrupted sequence contigs were covered by consecutive 24-mer probes and associated mismatch probe sets. Total RNA isolated from cells grown in skim milk or in MRS to mid-log phase was used as a template to synthesize cDNA, followed by Cy3 labeling and hybridization. An analysis of data from annotated gene probes identified 42 genes that were upregulated during the growth of CNRZ32 in milk (P < 0.05), and 25 of these genes showed upregulation after applying Bonferroni's adjustment. The tiled microarrays identified numerous additional genes that were upregulated in milk versus MRS. Collectively, array data showed the growth of CNRZ32 in milk-induced genes encoding cell-envelope proteinases, oligopeptide transporters, and endopeptidases as well as enzymes for lactose and cysteine pathways, de novo synthesis, and/or salvage pathways for purines and pyrimidines and other functions. Genes for a hypothetical phosphoserine utilization pathway were also differentially expressed. Preliminary experiments indicate that cheese-derived, phosphoserine-containing peptides increase growth rates of CNRZ32 in a chemically defined medium. These results suggest that phosphoserine is used as an energy source during the growth of L. helveticus CNRZ32

    Strains, isolated from the same children in different time points.

    No full text
    <p>Horizontal axis represent the age of the subject, rows represent the children, labels in the cells correspond to the isolated strains. Dotted lines connect similar strains.</p

    Whole genome alignment of complete genome sequences using Mauve.

    No full text
    <p>Colored boxes, linear collinear blocks (LCB). White gaps, insertions and deletions. Position atop or below the horizontal line represents the direction of LCB.</p

    Pairwise comparison of ortholog groups content in <i>B</i>. <i>longum</i> strains.

    No full text
    <p>Heatmap represents the number of shared orthologs between strains, the tree was inferred by complete linkage hierarchical clustering.</p

    Intraspecies Genomic Diversity and Long-Term Persistence of <i>Bifidobacterium longum</i>

    No full text
    <div><p>Members of genus <i>Bifidobacterium</i> are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. <i>Bifidobacterium longum</i> is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of <i>B</i>. <i>longum</i>, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (<i>longum</i>, <i>infantis</i> and <i>suis</i>) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies <i>longum</i> corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of <i>B</i>. <i>longum</i> from the same patients after long periods of time, however, we didn’t succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children.</p></div
    corecore