30 research outputs found

    Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods

    Get PDF
    Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alkylphosphonic and bifunctional carboxyalkylphosphonic acids. X-ray photoelectron and infrared spectroscopies have been combined with DFT modeling to explain and understand the interactions that drive the surface anchoring of phosphonic acids on ZnO surface. It was found that both monofunctional and bifunctional acids anchor on ZnO through a multidentate bonding which involves both P=O and P-O moieties of the phosphonic group. Moreover, anchored bifunctional acids bend to the surface, promoting a further interaction between surface hydroxyl groups and carboxylic terminations. This secondary interaction can be limited by increasing the surface density of the anchored molecules

    Improvement of the fatigue resistance of NiTi endodontic files by surface and bulk modifications.

    No full text
    Aim\u2002 To assess the failure mechanism of rotary NiTi instruments by chemical, structural and morphological analyses to provide a rational explanation of the effects of surface and bulk treatments on their resistance to fatigue fracture. Methodology\u2002 Thermal treatment (350\u2013500 \ub0C) was performed on electropolished (EP) and non-electropolished (Non-EP) NiTi endodontic instruments. Bulk and surface chemical composition and crystallographic structures were determined by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) to evaluate the effects of thermal treatment and electropolishing on the NiTi alloy. Fatigue tests of all instruments were performed. Surface morphology before and after the tests, and fractured section were analysed using scanning electron microscopy to determine crack extensions. Results were analysed statistically using analysis of variance (anova) and post hoc Student\u2013Newman\u2013Keuls test. Results\u2002 Before thermal treatment, significant differences (P < 0.05) in fatigue resistance between EP and Non-EP instruments (the number of revolutions to failure, Nf, was 385 and 160, respectively) were attributed to differences in the surface morphology of the instruments. SEM analysis of the fracture surfaces indicated that flexural fatigue fractures occurred in two steps: first by a slow growth of initial cracks and then rapid rupture of the remaining material. Thermal treatment did not affect the surface morphology but resulted in significant changes in the instrument bulk with the appearance of an R-phase and an improved fatigue resistance; indeed after treatment at 500 \ub0C, Nf increased up to 829 and 474 for EP and Non-EP instruments, respectively. Conclusions\u2002 Both thermal treatment and electropolishing improved the resistance of NiTi rotary instruments against fatigue fracture

    Spatially Confined Functionalization of Transparent NiO Thin Films with a Luminescent (1,10-Phenanthroline)tris(2-thenoyltrifluoroacetonato)europium Monolayer

    No full text
    Transparent MOCVD-grown NiO films have been functionalized with the luminescent (1,10-phenanthroline)tris(2-thenoyltrifluoroacetonato)europium(III) complex [Eu(TTA)(3)phen] by combining sputter activation with a solution synthetic route. To introduce the Eu complex only on selected regions, some areas of the NiO surface were activated by Ar+ ion sputtering and then functionalized with 3-phosphonopropionic acid (CPPA) followed by the anchoring of Eu(TTA)(3)phen through a ligand-exchange reaction between -diketonato ligands and the carboxylic groups of CPPA. The functionalized material was characterized by X-ray photoelectron, UV/Vis and luminescence spectroscopy. XPS measurements indicated that CPPA prefunctionalization and, in turn, the Eu(TTA)(3)phen anchoring occurs only on the sputter-activated region, while no anchoring takes place on the unactivated surface. The optical properties of the Eu(TTA)(3)phen-NiO system were evaluated by UV/Vis and luminescence spectroscopy

    Stabilizing Wide Bandgap Triple-Halide Perovskite Alloy through Organic Gelators

    No full text
    Engineering the chemical composition of metal-halide perovskites via halide mixing allows a facile bandgap modulation but renders perovskite materials prone to photoinduced halide segregation. Triple-halide alloys containing Cl, I, and Br were recently reported as a means to stabilize Cs(y)FA(1-y)Pb(BrxI1-x)(3) perovskite under illumination. Herein, these triple-halide alloys are found to be intrinsically less stable with respect to the reference I-Br in ambient conditions. By exploiting the influence of low-molecular-weight organic gelators on the crystallization of the perovskite material, a triple-halide alloy with improved moisture tolerance and thermal stability at temperatures as high as 120 degrees C is demonstrated. The hydroxyl-terminated organic gelators are found to aggregate into nanoscale fibers and promote the gelation of the solvent inducing the formation of a 3D network, positively interfering with perovskite solidification. The addition of a tiny amount of organic gelators imparts a more compact morphology, higher crystallinity, and compositional stability to the resulting triple-halide polycrystalline films, making them more robust over time without compromising the photovoltaic performance. Overall, this approach offers a solution toward fabrication of active perovskite materials with higher energy gap and improved stability, making these triple-halide alloys truly exploitable in solar cells

    Structural and electronic transitions in Ge2Sb2Te5 induced by ion irradiation damage

    No full text
    Ge2Sb2Te5 polycrystalline films either in the trigonal stable phase or in the metastable rock-salt structure have been irradiated with 150 keV Ar+ ions. The effects of disorder are studied by electrical, optical, and structural measurements and density functional theory (DFT) simulations. In the metastable structure, the main effect of ion irradiation is a progressive amorphization, with an optical threshold at a fluence of 3 x 10(13) cm(-2). For the trigonal structure, a metal-insulator transition and a crystalline transition to rock-salt structure occur prior to amorphization, which requires a fluence of 8 x 10(13) cm(-2). The bonds of Te atoms close to the van der Waals gaps, present in the trigonal phase and identified by Raman spectroscopy, change as a function of the disorder induced by the irradiation. Comparison with DFT simulations shows that ion irradiation leads to the gradual filling of the van der Waals gaps with displaced Ge and Sb lattice atoms, giving rise first to a metal-insulator transition (9% of displaced atoms) correlated to the modification of the Te bonds and then induces a structural transition to the metastable rock-salt phase (15% of displaced atoms). The data presented here not only show the possibility to tune the degree of order, and therefore the electrical properties and the structure of phase change materials by ion irradiation, but also underline the importance of the van der Waals gaps in determining the transport mechanisms and the stability of the crystalline structure

    Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells

    No full text
    Light scattering from ZnO nanorods (NR) is investigated, modeled, and applied to a solar cell. ZnO NR (120-1300 nm long, 280-60 nm large), grown by low-cost chemical bath deposition at 90 °C, exhibit diffused-to-total transmitted light as high as 70% and 30% in the 400 and 1000 nm wavelength range, respectively. Data and scattering simulation show that ZnO NR length plays a crucial role in light diffusion effect. A transparent ZnO NR film grown on glass and placed on top of a 1 μm thick c-Si solar cell is shown to enhance the light-current conversion efficiency for wavelengths longer than 600 nm. © 2015 AIP Publishing LLC
    corecore