145 research outputs found

    Super Luminous Supernovae as standardizable candles and high redshift distance probes

    Get PDF
    We investigate the use of type Ic Super Luminous Supernovae as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures and bright restframe ultraviolet emission. We present a sample of sixteen published SLSN, from redshifts 0.1 to 1.2 and calculate accurate K-corrections to determine uniform magnitudes in two synthetic rest-frame filters with central wavelengths at 400nm and 520nm. At 400nm, we find a low scatter in their uncorrected, raw mean magnitudes with M(400)=-21.70 for the full sample of sixteen objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. We define a ΔM(30)\Delta M(30) decay relation. This correlates peak magnitude and decline over 30 days and can reduce the scatter to 0.25. We further show that M(400) appears to have a strong colour dependence. Using this colour rate decay relation, a low scatter of between 0.19 and 0.26 can be found depending on sample selection. However we caution that only eight to ten objects currently have enough data to test this colour rate decline relation. We conclude that SLSN Ic are promising distance indicators at high redshift in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems and how they may evolve with redshift are of some concern. The two major measurement uncertainties are the limited numbers of low redshift objects to test these relationships and internal dust extinction in the host galaxies.Comment: The authors regret that in the published version (2014, APJ, 796, 87) there were calculation errors in many of the values in Table 1 and in particular the important values for M(400) and the decline rates. The two main conclusions of the paper are unchanged, but the quantitative rms values are larger than previously reporte

    The death of massive stars - II. Observational constraints on the progenitors of type Ibc supernovae

    Full text link
    The progenitors of many type II core-collapse supernovae have now been identified directly on pre-discovery imaging. Here we present an extensive search for the progenitors of type Ibc supernovae in all available pre-discovery imaging since 1998. There are 12 type Ibc supernovae with no detections of progenitors in either deep ground-based or Hubble Space Telescope archival imaging. The deepest absolute BVR magnitude limits are between -4 and -5. We compare these limits with the observed Wolf-Rayet population in the Large Magellanic Cloud and estimate a 16 per cent probability we have failed to detect such a progenitor by chance. Alternatively the progenitors evolve significantly before core-collapse or we have underestimated the extinction towards the progenitors. Reviewing the relative rates and ejecta mass estimates from lightcurve modelling of Ibc SNe, we find both incompatible with Wolf-Rayet stars with initial masses >25Msun being the only progenitors. We present binary evolution models that fit these observational constraints. Stars in binaries with initial masses <20Msun lose their hydrogen envelopes in binary interactions to become low mass helium stars. They retain a low mass hydrogen envelope until approximately 10,000 years before core-collapse; hence it is not surprising that galactic analogues have been difficult to identify.Comment: Accepted by MNRAS. 31 pages, 12 figures, 8 table

    Sher 25: pulsating but apparently alone

    Get PDF
    The blue supergiant Sher25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula, which shows similarities to the triple-ring structure seen around SN1987A. From optical spectroscopy over six consecutive nights, we detect periodic radial velocity variations in the stellar spectrum of Sher25 with a peak-to-peak amplitude of ~12 km/s on a timescale of about 6 days, confirming the tentative detec-tion of similar variations by Hendry et al. From consideration of the amplitude and timescale of the signal, coupled with observed line profile variations, we propose that the physical origin of these variations is related to pulsations in the stellar atmosphere, rejecting the previous hypothesis of a massive, short-period binary companion. The radial velocities of two other blue supergiants with similar bipolar nebulae, SBW1 and HD 168625, were also monitored over the course of six nights, but these did not display any significant radial velocity variations.Comment: 9 pages, 7 figures. Accepted for publication in MNRA

    Spatially resolved MaNGA observations of the host galaxy of superluminous supernova 2017egm

    Get PDF
    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O/H) = 8.8-9.1). Additionally we measure a small H-alpha equivalent width (EW) at the SN position of just 34 Angs, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.Comment: Accepted version in ApJ Letter. Thank you for useful comment

    An upper mass limit for the progenitor of the TypeII-P supernova SN1999gi

    Get PDF
    Masses and progenitor evolutionary states of TypeII supernovae remain almost unconstrained by direct observations. Only one robust observation of a progenitor (SN1987A) and one plausible observation (SN1993J) are available. Neither matched theoretical predictions and in this Letter we report limits on a third progenitor (SN1999gi). The Hubble Space Telescope has imaged the site of the TypeII-P supernova SN1999gi with the WFPC2 in two filters (F606W and F300W) prior to explosion. The distance to the host galaxy (NGC3184) of 7.9Mpc means that the most luminous, massive stars are resolved as single objects in the archive images. The supernova occurred in a resolved, young OB association 2.3kpc from the centre of NGC3184 with an association age of about 4Myrs. Follow-up images of SN1999gi with WFPC2 taken 14 months after discovery determine the precise position of the SN on the pre-explosion frames. An upper limit of the absolute magnitude of the progenitor is estimated (M_v >= -5.1). By comparison with stellar evolutionary tracks this can be interpreted as a stellar mass, and we determine an upper mass limit of 9(+3/-2)M_solar. We discuss the possibility of determining the masses or mass limits for numerous nearby core-collapse supernovae using the HST archive enhanced by our current SNAP programme.Comment: To appear in ApJ Letters, 16 pages, 3 figure

    The birth place of the type Ic Supernova 2007gr

    Get PDF
    We report our attempts to locate the progenitor of the peculiar type Ic SN 2007gr in HST pre-explosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini (North) Telescope with the pre-explosion HST WFPC2 images, we identify the SN position on the HST frames with an accuracy of 20 mas. Although nothing is detected at the SN position we show that it lies on the edge of a bright source, 134+/-23 mas (6.9 pc) from its nominal centre. Based on its luminosity we suggest that this object is possibly an unresolved, compact and coeval cluster and that the SN progenitor was a cluster member, although we note that model profile fitting favours a single bright star. We find two solutions for the age of this assumed cluster; 7-/+0.5 Myrs and 20-30 Myrs, with turn-off masses of 28+/-4 Msun and 12-9 Msun respectively. Pre-explosion ground-based K-band images marginally favour the younger cluster age/higher turn-off mass. Assuming the SN progenitor was a cluster member, the turn-off mass provides the best estimate for its initial mass. More detailed observations, after the SN has faded, should determine if the progenitor was indeed part of a cluster, and if so allow an age estimate to within ~2 Myrs thereby favouring either a high mass single star or lower mass interacting binary progenitor.Comment: 12 pages, 3 figures, resolution of fig 1. has been reduced, some revision based on referee's comments, Accepted ApJL 27 Nov 200

    Signatures of an eruptive phase before the explosion of the peculiar core-collapse SN 2013gc

    Get PDF
    We present photometric and spectroscopic analysis of the peculiar core-collapse SN 2013gc, spanning seven years of observations. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At +200 days from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminosity decline after +300 d. In archival images taken between 1.5 and 2.5 years before the explosion, a weak source is visible at the supernova location, with mag\approx20. The early supernova spectra show Balmer lines, with a narrow (\sim560 km s1^{-1}) P-Cygni absorption superimposed on a broad (\sim3400 km s1^{-1}) component, typical of type IIn events. Through a comparison of colour curves, absolute light curves and spectra of SN 2013gc with a sample of supernovae IIn, we conclude that SN 2013gc is a member of the so-called type IId subgroup. The complex profile of the Hα\alpha line suggests a composite circumstellar medium geometry, with a combination of lower velocity, spherically symmetric gas and a more rapidly expanding bilobed feature. This circumstellar medium distribution has been likely formed through major mass-loss events, that we directly observed from 3 years before the explosion. The modest luminosity (MI16.5M_I\sim-16.5 near maximum) of SN 2013gc at all phases, the very small amount of ejected 56^{56}Ni (of the order of 10310^{-3} M_\odot), the major pre-supernova stellar activity and the lack of prominent [O I] lines in late-time spectra support a fall-back core-collapse scenario for the massive progenitor of SN~2013gc.Comment: 20 pages, 11 figures, 8 tables, accepted by MNRA

    A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS)

    Full text link
    The Asteroid Terrestrial-impact Last Alert System (ATLAS) carries out its primary planetary defense mission by surveying about 13000 deg^2 at least four times per night. The resulting data set is useful for the discovery of variable stars to a magnitude limit fainter than r~18, with amplitudes down to 0.01 mag for bright objects. Here we present a Data Release One catalog of variable stars based on analyzing 142 million stars measured at least 100 times in the first two years of ATLAS operations. Using a Lomb-Scargle periodogram and other variability metrics, we identify 4.7 million candidate variables which we analyze in detail. Through Space Telescope Science Institute, we publicly release lightcurves for all of them, together with a vector of 169 classification features for each star. We do this at the level of unconfirmed candidate variables in order to provide the community with a large set of homogeneously analyzed photometry and avoid pre-judging which types of objects others may find most interesting. We use machine learning to classify the candidates into fifteen different broad categories based on lightcurve morphology. About 10% (430,000 stars) pass extensive tests designed to screen out spurious variability detections: we label these as `probable' variables. Of these, 230,000 receive specific classifications as eclipsing binaries, pulsating, Mira-type, or sinusoidal variables: these are the `classified' variables. New discoveries among the probable variables number more than 300,000, while 150,000 of the classified variables are new, including about 10,000 pulsating variables, 2,000 Mira stars, and 70,000 eclipsing binaries.Comment: Accepted by AJ; gives instructions for querying ATLAS variable star database; this new version has nicer lightcurve figure

    Constraints on the Progenitor of SN 2016gkg From Its Shock-Cooling Light Curve

    Full text link
    SN 2016gkg is a nearby Type IIb supernova discovered shortly after explosion. Like several other Type IIb events with early-time data, SN 2016gkg displays a double-peaked light curve, with the first peak associated with the cooling of a low-mass extended progenitor envelope. We present unprecedented intranight-cadence multi-band photometric coverage of the first light-curve peak of SN 2016gkg obtained from the Las Cumbres Observatory Global Telescope network, the Asteroid Terrestrial-impact Last Alert System, the Swift satellite and various amateur-operated telescopes. Fitting these data to analytical shock-cooling models gives a progenitor radius of ~25-140 solar radii with ~2-30 x 10^-2 solar masses of material in the extended envelope (depending on the model and the assumed host-galaxy extinction). Our radius estimates are broadly consistent with values derived independently (in other works) from HST imaging of the progenitor star. However, the shock-cooling model radii are on the lower end of the values indicated by pre-explosion imaging. Hydrodynamical simulations could refine the progenitor parameters deduced from the shock-cooling emission and test the analytical models.Comment: Accepted by ApJ
    corecore