24 research outputs found

    Fifty Years of CPGs: Two Neuroethological Papers that Shaped the Course of Neuroscience

    Get PDF
    Half a century ago, two independent papers that described unexpected results of experiments on locomotion in insects and crayfish appeared almost simultaneously. Together these papers demonstrated that an animal's central nervous system (CNS) was organized to produce behaviorally important motor output without the need for constant sensory feedback. These results contradicted the established line of thought that was based on interpretations of reflexes and ablation experiments, and established that in these animals the CNS contained neural circuits that could produce complex, periodic, multisegmental patterns of activity. These papers stimulated a flowering of research on central pattern-generating mechanisms that displaced reflex-based thinking everywhere except in medical physiology texts. Here we review these papers and their influence on thinking in the 1960s, 1970s, and today. We follow the development of ideas about central organization and control of expression of motor patterns, the roles of sensory input to central pattern-generating circuits, and integration of continuous sensory signals into a periodic motor system. We also review recent work on limb coordination that provides detailed cellular explanations of observations and speculations contained in those original papers

    Toxicity study in blood and tumor cells of laser produced medicines for application in fabrics

    Get PDF
    Phenothiazine derivatives are non-antibiotics with antimicrobial, fungistatic and fungicidal effects. We exposed to a high energy UV laser beam phenothiazines solutions in water at 20mg/mL concentration to increase antibacterial activity of resulting mixtures. Compared to previous results obtained on bacteria, more research is needed about UV laser irradiated phenothiazines applications on cancer cell cultures to evidence possible anticancerous properties. Evaluation of the safety of the newly obtained photoproducts in view of use on humans is also needed. Due to expensive animal testing in toxicology and pressure from general public and governments to develop alternatives to in vivo testing, in vitro cell-based models are attractive for preliminary testing of new materials. Cytotoxicity screening reported here shows that laser irradiated (4h exposure time length) chlorpromazine and promazine are more efficient against some cell cultures. Interaction of laser irradiated phenothiazines with fabrics show that promethazine and chlorpromazine have improved wetting properties. Correlation of these two groups of properties shows that chlorpromazine appears to be more recommended for applications on tissues using fabrics as transport vectors. The reported results concern stability study of phenothiazines water solutions to know the time limits within which they are stable and may be used. Keywords: Culture cells; Fabrics; Hemolysis; In vitro cytotoxicity; Laser; Phenothiazines

    Der Einfluss eines Muskelsehnenorgans auf modulatorische Projektionsneurone und zentrale Mustergeneratoren im stomatogastrischen Nervensystem des Taschenkrebses

    No full text
    For an appropriate interaction with the environment, animals process sensory information with their nervous system. One well suited model systems for the investigation of neural processing is the stomatogastric nervous system (STNS) of the crab, Cancer pagurus. It is attached to the crab foregut and controls the movement of food throughout the foregut. It generates the pyloric rhythm, which is responsible for the filtering of food, and the gastric mill rhythm (GMR), which controls the movement of three internal teeth. These rhythms are modulated by the activity of descending projection neurons (Norris et al., 1994; Blitz et al., 1999; Nusbaum et al., 1992; Norris et al., 1996) and they are influenced by sensory feedback (Beenhakker et al., 2004; Combes et al., 1995; Katz & Harris-Warrick, 1991). In this work I characterized the influence of the sensory cell AGR (anterior gastric receptor) on the pyloric and gastric mill rhythms. AGR has a bipolar cell body and is located in the stomatogastric ganglion. It could be activated during an increase of tension of the gastric muscle gm1. AGR possessed at least two spike initiation zones. It was spontaneous active with low firing frequencies and displayed different active membrane properties. When AGR was activated with current injections, it diminished the activity of two pyloric neurons and prolonged the pyloric cycle period. It also effected the gastric mill rhythm by exciting the protractor motor neurons and inhibiting the retractor motor neuron. When a gastric mill rhythm was active, rhythmic AGR stimulation entrained this rhythm to faster or slower periods (up to 60 %). In addition, a single AGR stimulus could reset the gastric mill rhythm at any time of the gastric phase. The actions of AGR on both rhythms were elicited via a change in projection neuron activity. I characterized the interactions between AGR and four identified projection neurons. In addition, I activated AGR in closed loop conditions such that motor neurons and AGR could interact. These experiments demonstrated the importance of an appropriate timing of sensory feedback. Thus, for a general understanding of sensorimotor interaction, the processing of sensory information in higher neural centers is of critical importance

    Mechanisms of Coordination in Distributed Neural Circuits: Encoding Coordinating Information

    No full text
    We describe synaptic connections through which information essential for encoding efference copies reaches two coordinating neurons in each of the microcircuits that controls limbs on abdominal segments of the crayfish, Pacifastacus leniusculus. In each microcircuit, these coordinating neurons fire bursts of spikes simultaneously with motor neurons. These bursts encode timing, duration, and strength of each motor burst. Using paired microelectrode recordings, we demonstrate that one class of nonspiking neurons in each microcircuit's pattern-generating kernel-IPS-directly inhibits the ASC(E) coordinating neuron that copies each burst in power-stroke (PS) motor neurons. This inhibitory synapse parallels IPS's inhibition of the same PS motor neurons. Using a disynaptic pathway to control its membrane potential, we demonstrate that a second type of nonspiking interneuron in the pattern-generating kernel-IRSh-inhibits the DSC coordinating neuron that copies each burst in return-stroke (RS) motor neurons. This inhibitory synapse parallels IRS's inhibition of the microcircuit's RS motor neurons. Experimental changes in the membrane potential of one IPS or one IRSh neuron simultaneously changed the strengths of motor bursts, durations, numbers of spikes, and spike frequency in the simultaneous ASC(E) and DSC bursts. ASC(E) and DSC coordinating neurons link the segmentally distributed microcircuits into a coordinated system that oscillates with the same period and with stable phase differences. The inhibitory synapses from different pattern-generating neurons that parallel their inhibition of different sets of motor neurons enable ASC(E) and DSC to encode details of each oscillation that are necessary for stable, adaptive synchronization of the system

    Mechanisms of Coordination in Distributed Neural Circuits: Decoding and Integration of Coordinating Information

    No full text
    We describe the synaptic connections through which information required to coordinate limb movements reaches the modular microcircuits that control individual limbs on different abdominal segments of the crayfish, Pacifastacus leniusculus. In each segmental ganglion, a local commissural interneuron, ComInt 1, integrates information about other limbs and transmits it to one microcircuit. Five types of nonspiking local interneurons are components of each microcircuit's pattern-generating kernel (Smarandache-Wellmann et al., 2013). We demonstrate here, using paired microelectrode recordings, that the pathway through which information reaches this kernel is an electrical synapse between ComInt 1 and one of these five types, an IRSh interneuron. Using single-electrode voltage clamp, we show that brief changes of ComInt 1's membrane potential affect the timing of its microcircuit's motor output. Changing ComInt 1's membrane potential also changes the phase, duration, and strengths of bursts of spikes in its microcircuit's motor neurons and corresponding changes in its efferent coordinating neurons that project to other ganglia. These effects on coordinating neurons cause changes in the phases of motor output from other microcircuits in those distant ganglia. ComInt 1s function as hub neurons in the intersegmental circuit that synchronizes distributed microcircuits. The synapse between each ComInt 1 and its microcircuit's IRSh neuron completes a five synapse pathway in which analog information is encoded as a digital signal by efference-copy neurons and decoded from digital to analog form by ComInt 1. The synaptic organization of this pathway provides a cellular explanation of this nervous system's key dynamic properties

    The Swimmeret System of Crayfish: A Practical Guide for the Dissection of the Nerve Cord and Extracellular Recordings of the Motor Pattern

    No full text
    Here we demonstrate the dissection of the crayfish abdominal nerve cord. The preparation comprises the last two thoracic ganglia (T4, T5) and the chain of abdominal ganglia (A1 to A6). This chain of ganglia includes the part of the central nervous system (CNS) that drives coordinated locomotion of the pleopods (swimmerets): the swimmeret system. It is known for over five decades that in crayfish each swimmeret is driven by its own independent pattern generating kernel that generates rhythmic alternating activity (1-3). The motor neurons innervating the musculature of each swimmeret comprise two anatomically and functionally distinct populations (4). One is responsible for the retraction (power stroke, PS) of the swimmeret. The other drives the protraction (return stroke, RS) of the swimmeret. Motor neurons of the swimmeret system are able to produce spontaneously a fictive motor pattern, which is identical to the pattern recorded in vivo (1). The aim of this report is to introduce an interesting and convenient model system for studying rhythm generating networks and coordination of independent microcircuits for students' practical laboratory courses. The protocol provided includes step-by-step instructions for the dissection of the crayfish's abdominal nerve cord, pinning of the isolated chain of ganglia, desheathing the ganglia and recording the swimmerets fictive motor pattern extracellularly from the isolated nervous system. Additionally, we can monitor the activity of swimmeret neurons recorded intracellularly from dendrites. Here we also describe briefly these techniques and provide some examples. Furthermore, the morphology of swimmeret neurons can be assessed using various staining techniques. Here we provide examples of intracellular (by iontophoresis) dye filled neurons and backfills of pools of swimmeret motor neurons. In our lab we use this preparation to study basic functions of fictive locomotion, the effect of sensory feedback on the activity of the CNS, and coordination between microcircuits on a cellular level
    corecore