7,623 research outputs found

    Detecting periodicity in experimental data using linear modeling techniques

    Get PDF
    Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a new method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an information theoretic reduction of linear (autoregressive) models so that only the essential features of an autoregressive model are retained. These models we call reduced autoregressive models (RARM). The essential features of reduced autoregressive models include any periodicity present in the data. We provide theoretical and numerical evidence from both experimental and artificial data, to demonstrate that this technique will reliably detect periodicities if and only if they are present in the data. There are strong information theoretic arguments to support the statement that RARM detects periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our calculations demonstrate that RARM is more robust, more accurate, and more sensitive, than traditional spectral techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified styl

    Routes of salmonellae contamination in pig lairages and the development and evaluation of simple cleaning methods

    Get PDF
    The aim of this project was to identify, and validate, the best lairage-to-stunning practices to reduce cross-contamination, and to assess the general status of the lairage hygiene and lairage cleaning effectiveness in UK abattoirs

    Reconstruction of ionization probabilities from spatially averaged data in N-dimensions

    Get PDF
    We present an analytical inversion technique which can be used to recover ionization probabilities from spatially averaged data in an N-dimensional detection scheme. The solution is given as a power series in intensity. For this reason, we call this technique a multiphoton expansion (MPE). The MPE formalism was verified with an exactly solvable inversion problem in 2D, and probabilities in the postsaturation region, where the intensity-selective scanning approach breaks down, were recovered. In 3D, ionization probabilities of Xe were successfully recovered with MPE from simulated (using the ADK tunneling theory) ion yields. Finally, we tested our approach with intensity-resolved benzene ion yields showing a resonant multiphoton ionization process. By applying MPE to this data (which was artificially averaged) the resonant structure was recovered-suggesting that the resonance in benzene may have been observable in spatially averaged data taken elsewhere.Comment: 19 pages and 3 figure

    Evolution of accretion disks around massive black holes: constraints from the demography of active galactic nuclei

    Full text link
    Observations have shown that the Eddington ratios (the ratio of the bolometric luminosity to the Eddington luminosity) in QSOs/active galactic nuclei (AGNs) cover a wide range. In this paper we connect the demography of AGNs obtained by the Sloan Digital Sky Survey with the accretion physics around massive black holes and propose that the diversity in the Eddington ratios is a natural result of the long-term evolution of accretion disks in AGNs. The observed accretion rate distribution of AGNs (with host galaxy velocity dispersion sigma~70-200 km/s) in the nearby universe (z<0.3) is consistent with the predictions of simple theoretical models in which the accretion rates evolve in a self-similar way. We also discuss the implications of the results for the issues related to self-gravitating disks, coevolution of galaxies and QSOs/AGNs, and the unification picture of AGNs.Comment: 18 pages, 2 figures; revised, main conclusions not changed; to appear in ApJ, Oct., 200

    Star Formation in AEGIS Field Galaxies since z=1.1 : The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-Forming Galaxies

    Get PDF
    We analyze star formation (SF) as a function of stellar mass (M*) and redshift z in the All Wavelength Extended Groth Strip International Survey (AEGIS). For 2905 field galaxies, complete to 10^10(10^10.8) Msun at z<0.7(1), with Keck spectroscopic redshifts out to z=1.1, we compile SF rates (SFR) from emission lines, GALEX, and Spitzer MIPS 24 micron photometry, optical-NIR M* measurements, and HST morphologies. Galaxies with reliable signs of SF form a distinct "main sequence (MS)", with a limited range of SFR at a given M* and z (1 sigma < +-0.3 dex), and log(SFR) approximately proportional to log(M*). The range of log(SFR) remains constant to z>1, while the MS as a whole moves to higher SFR as z increases. The range of SFR along the MS constrains the amplitude of episodic variations of SF, and the effect of mergers on SFR. Typical galaxies spend ~67(95)% of their lifetime since z=1 within a factor of <~ 2(4) of their average SFR at a given M* and z. The dominant mode of the evolution of SF since z~1 is apparently a gradual decline of the average SFR in most individual galaxies, not a decreasing frequency of starburst episodes, or a decreasing factor by which SFR are enhanced in starbursts. LIRGs at z~1 seem to mostly reflect the high SFR typical for massive galaxies at that epoch. The smooth MS may reflect that the same set of few physical processes governs star formation prior to additional quenching processes. A gradual process like gas exhaustion may play a dominant role.Comment: 5 pages, 1 figure, emulateapj; ApJ Letters, accepted; AEGIS special issue; proof-level corrections added; title change

    Quasar Luminosity Functions from Joint Evolution of Black Holes and Host Galaxies

    Full text link
    We show that our previously proposed anti-hierarchical baryon collapse scenario for the joint evolution of black holes and host galaxies predicts quasar luminosity functions at redshifts 1.5<z<6 and local properties in nice agreement with observations. In our model the quasar activity marks and originates the transition between an earlier phase of violent and heavily dust-enshrouded starburst activity promoting rapid black hole growth, and a later phase of almost passive evolution; the former is traced by the submillimeter-selected sources, while the latter accounts for the high number density of massive galaxies at substantial redshifts z>1.5, the population of Extremely Red Objects, and the properties of local ellipticals.Comment: 15 pages, 8 figures, uses REVTeX 4 + emulateapj.cls and apjfonts.sty. Version revised following referee's comments. Accepted on Ap

    Toward precise constraints on growth of massive black holes

    Full text link
    Growth of massive black holes (MBHs) in galactic centers comes mainly from gas accretion during their QSO/AGN phases. In this paper we apply an extended Soltan argument, connecting the local MBH mass function with the time-integral of the QSO luminosity function, to the demography of MBHs and QSOs from recent optical and X-ray surveys, and obtain robust constraints on the luminosity evolution (or mass growth history) of individual QSOs (or MBHs). We find that the luminosity evolution probably involves two phases: an initial exponentially increasing phase set by the Eddington limit and a following phase in which the luminosity declines with time as a power law (with a slope of -1.2--1.3) set by a self-similar long-term evolution of disk accretion. Neither an evolution involving only the increasing phase with a single Eddington ratio nor an exponentially declining pattern in the second phase is likely. The period of a QSO radiating at a luminosity higher than 10% of its peak value is about (2-3)x10^8 yr, during which the MBH obtains ~80% of its mass. The mass-to-energy conversion efficiency is 0.16±0.040+0.050.16\pm0.04 ^{+0.05}_{-0}, with the latter error accounting for the maximum uncertainty due to Compton-thick AGNs. The expected Eddington ratios in QSOs from the constrained luminosity evolution cluster around a single value close to 0.5-1 for high-luminosity QSOs and extend to a wide range of lower values for low-luminosity ones. The Eddington ratios for high luminosity QSOs appear to conflict with those estimated from observations (~0.25) by using some virial mass estimators for MBHs in QSOs unless the estimators systematically over-estimate MBH masses by a factor of 2-4. We also infer the fraction of optically obscured QSOs ~60-80%. Further applications of the luminosity evolution of individual QSOs are also discussed.Comment: 25 pages, 13 figures, ApJ in pres

    On the Cosmological Evolution of the Luminosity Function and the Accretion Rate of Quasars

    Full text link
    We consider a class of models for the redshift evolution (between 0\lsim z \lsim 4) of the observed optical and X-ray quasar luminosity functions (LFs), with the following assumptions: (i) the mass-function of dark matter halos follows the Press-Schechter theory, (ii) the black hole (BH) mass scales linearly with the halo mass, (iii) quasars have a constant universal lifetime, and (iv) a thin accretion disk provides the optical luminosity of quasars, while the X-ray/optical flux ratio is calibrated from a sample of observed quasars. The mass accretion rate M˙\dot{M} onto quasar BHs is a free parameter of the models, that we constrain using the observed LFs. The accretion rate M˙\dot M inferred from either the optical or X-ray data under these assumptions generally decreases as a function of cosmic time from z4z \simeq 4 to z0z \simeq 0. We find that a comparable accretion rate is inferred from the X-ray and optical LF only if the X-ray/optical flux ratio decreases with BH mass. Near z0z\simeq 0, M˙\dot M drops to substantially sub-Eddington values at which advection-dominated accretion flows (ADAFs) exist. Such a decline of M˙\dot M, possibly followed by a transition to radiatively inefficient ADAFs, could explain both the absence of bright quasars in the local universe and the faintness of accreting BHs at the centers of nearby galaxies. We argue that a decline of the accretion rate of the quasar population is indeed expected in cosmological structure formation models.Comment: Latex, 23 pages, 9 figures, accepted for publication in Ap
    corecore