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Reconstruction of ionization probabilities from spatially averaged data in N dimensions
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We present an analytical inversion technique, which can be used to recover ionization probabilities from
spatially averaged data in an N -dimensional detection scheme. The solution is given as a power series in intensity.
For this reason, we call this technique a multiphoton expansion (MPE). The MPE formalism was verified with an
exactly solvable inversion problem in two dimensions, and probabilities in the postsaturation region, where the
intensity-selective scanning approach breaks down, were recovered. In three dimensions, ionization probabilities
of Xe were successfully recovered with MPE from simulated (using the Ammosov-Delone-Krainov tunneling
theory) ion yields. Finally, we tested our approach with intensity-resolved benzene-ion yields, which show a
resonant multiphoton ionization process. By applying MPE to this data (which were artificially averaged), the
resonant structure was recovered, which suggests that the resonance in benzene may have been observed in
spatially averaged data taken elsewhere.
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In the investigation of fundamental quantum mechanical
phenomena, the interaction of ultrashort pulses of radiation
with atomic and molecular systems has become an important
subject in the laboratory and in theoretical investigations. In
particular, the interaction of the noble gases with radiation
has been studied extensively over the past few decades and
is well documented in the literature [1–3]. With advances in
theory and technology, a refined physical understanding of the
ionization of the rare-gas atoms is currently being elaborated
[1,4]. In the case of complex molecular systems, the task
of calculating ionization probabilities becomes increasingly
more difficult as the number of degrees of freedom increases.
For this reason, approximations designed to capture the
essential physics of the interaction are routinely proposed
[5,6], but only through experimental investigations can these
approximations be verified and potentially lead to useful
generalizations.

In many experiments, measured data are the result of
integration by a detection device. For example, in the inter-
action of radiation with ion beams, three-dimensional (3D)
velocity distributions of product particles (i.e., photofragments
and photoelectrons) are projected onto a two-dimensional
(2D) detector [7–9]. In the production of plasma channels,
3D radial electron-density profiles are projected onto a 2D
surface and are recorded as interferograms [10,11]. These are
examples where the Abel inversion has been used to render
physical information from integrated data. Analogously, time-
of-flight (TOF) spectrometers commonly integrate 3D ion
distributions produced within the focus of a laser beam [12];
consequently, measured yields are averaged over a broad
range of intensities. This is known in the literature as spatial
averaging [13].

To understand spatial averaging and some of its conse-
quences, consider the isointensity shells within an HG0,0 mode.
At a particular intensity Ij , the boundary of an isointensity shell

has the dependence rj (z,I0) = w

√
ln |I0w

2
0/Ijw2|/2, where

w0 and w(z) are the beam waist and size and I0 is the peak
intensity. As an example, in Fig. 1, the blue peanut-shaped
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shell, which has a semitransparent top half, is calculated
for a lower intensity than the red shell shown within. If
we assume that the appearance and the saturation intensities
of Xe+ correspond to the blue and red shells, respectively,
and the saturation intensity of Xe2+ coincides with the peak
intensity I0, then Xe+ ions will mainly be found within the
volume bounded by the blue and red shells, while those
of Xe2+will be found within the red shell. For this reason,
experimentally measured ion signals, for peak intensity I0, are
the volume-integrated product yield [12,13]:

I0S(I0) ∝
∫ I0

0
I0

∣∣∣∣∂V (I,I0)

∂I

∣∣∣∣ P (I ) dI . (1)

Here, S(I0) is the ion signal, P (I ) is the intensity-dependent
ionization probability, and |∂V (I,I0)/∂I | is the so-called
volumetric weighting factor. The ionization probability P (I )
in Eq. (1) is the normalized fractional number of particles
of a specific mass and charge expected after the laser-
matter interaction. For reasons that will become clear, we
have multiplied both sides of Eq. (1) by I0. The physical
manifestation of Eq. (1) has caused many difficulties for
both experimentalists and theoreticians. In experiments, the
effect of spatial averaging tends to smear out subtle features
that otherwise may have appeared in presaturation yields
and removes expected decreases (typically orders of magni-
tude) in postsaturation yields due to competing higher-order
processes such as sequential ionization or fragmentation.
In the literature, with some exceptions [4,14], theoretically
determined ionization probabilities are artificially averaged—
possibly concealing new physics—for better comparison with
experimental data. In this paper, an analytical solution to
Eq. (1), which can be used to recover P (I ) from S(I0)
in an N -dimensional detection scheme, is derived. Previous
experimental and theoretical methods used to circumvent
spatial averaging are: intensity-selective scanning (ISS) [13]
and its modifications [4], intensity-difference spectrum [15],
and intensity-resolved ion imaging (Ref. [12] and references
therein).

For the general N -dimensional problem, the highly
successful methods outlined in Refs. [4,13,15] cannot be used
to recover P (I ). The volumes of the isointensity shells in
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FIG. 1. (Color online) Isointensity shells within a Gaussian laser
beam, which propagates along the z axis. The blue shell, which has
a semitransparent top half, is at a lower intensity than the red shell
shown within.

N dimensions are [15]:

V3D ∝
(

I0

I
− 1

)1/2

+ 1

6

(
I0

I
− 1

)3/2

− arctan

(
I0

I
− 1

)1/2

,

(2a)

V2D ∝ ln

∣∣∣∣I0

I

∣∣∣∣ , (2b)

V1D ∝
(

ln

∣∣∣∣I0

I

∣∣∣∣
)1/2

. (2c)

Each of the volumes in Eq. (2) is dependent on both the
local and the peak intensities VND = VND(I,I0). By using a
sufficiently large entrance slit to a TOF spectrometer, all ions
in the focus of a laser beam can be collected. This type of
detection method is known as full view and corresponds to
the volume in Eq. (2a) [13]. The volume in Eq. (2b) is that of
a 2D slice taken perpendicular to the propagation direction,
which is achieved by using a narrow rectangular slit in the
xy plane (Fig. 1). Two different detection schemes are
possible with this geometry: intensity scanning and ISS. The
inversion technique that we outline here is applicable to both
types of scanning. The 1D volume of Eq. (2c) is that of a line
volume along the propagation direction of the beam. This 1D
volume can be realized experimentally by placing a narrow
slit along the propagation direction (z), and in the y direction,
the volume can be further limited by time slicing [12,16,17].
Taking the derivative of the volumes in Eq. (2) and multiplying
by I0 gives the intensity-scaled volumetric weighting factors
KND = I0|∂V/∂I | in Eq. (1):

K3D(I,I0) ∝ I0

I

(
1 + I0

I

) (
I0

I
− 1

)1/2

, (3a)

K2D(I,I0) ∝ I0

I
, (3b)

K1D(I,I0) ∝ I0

I
(ln |I0/I |)−1/2. (3c)

To solve for the probability, we make the assumption that both
P (I ) and the intensity-scaled signal I0S(I0) can be expanded
in series:

I0S(I0) = Im
0

∑
k

Akfk(I0), (4a)

P (I ) = I n
∑

k

Bkfk(I ). (4b)

Here, Ak and Bk are expansion coefficients, and fk(I0) are
basis functions. The role of the integers m and n will be
discussed later. If P (I ) can be presented analytically, and Bk

and fk(I ) are known, then the probability can be expanded
by using Eq. (4b). To this end, Eqs. (4) are inserted into the
volume integral of Eq. (1):

Im
0

∑
k

Akfk(I0) ∝
∑

k

∫ I0

0
KND(I,I0)I nBkfk(I ) dI . (5)

Here, the summation has been moved outside of the integral.
From Eq. (3), it can be seen that all of the kernels have
a commonality: these kernels can be written in the form
KND(I,I0) = KND(I/I0). This explains why both sides of the
volume integral of Eq. (1) were multiplied by I0 and allows the
substitution ξ = I/I0 to be made to all intensity-dependent
quantities on the right-hand side of Eq. (5),

Im
0

∑
k

Akfk(I0) ∝ I n+1
0

∑
k

∫ 1

0
KND(ξ )ξnBkfk(ξI0) dξ.

(6)

Both sides of Eq. (6) will have a similar form if n + 1 = m,
Bk = Ak/Gk , and fk(ξI0) = fk(ξ )fk(I0) (the last equality is
the Cauchy multiplicative equation [18]):

Im
0

∑
k

Akfk(I0)

∝ Im
0

∑
k

Akfk(I0)

[
1

Gk

∫ 1

0
KND(ξ )ξm−1fk(ξ ) dξ

]
. (7)

For both sides of Eq. (7) to be consistent, the bracketed
expression together with the proportionality constant must be
equal to unity for all values of k and m, therefore,

Gk ∝
∫ 1

0
KND(ξ )ξm−1fk(ξ ) dξ. (8)

Equation (5) has now been reduced to a form that allows the
values of Bk = Ak/Gk to be determined if those of Ak are
known. Because the basis functions fk satisfy the Cauchy
equation, they have the solutions fk(x) = xk . The series
solutions of Eqs. (4) take the final form

S(I0) = Im−1
0

∑
k

AkI
k
0 , (9a)

P (I ) = Im−1
∑

k

Ak

Gk

I k. (9b)

The volumetric coefficients Gk , which inherit the geometry of
the problem at hand and are needed in order to recover P (I ),
can be found analytically by inserting Eqs. (3) into Eq. (8)
with fk(ξ ) = ξk and integrating:

G3D
k ∝ (m + k − 2)2[2(m + k − 3)]!

4m+k[(m + k − 2)!]2(m + k − 1)
, (10a)

G2D
k ∝ 1

m + k − 1
, (10b)

G1D
k ∝

√
1

m + k − 1
. (10c)
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As a final note, while this derivation was carried out for the
fundamental Gaussian mode, the formalism may accommo-
date non-Gaussian beams. A prerequisite is the analytical
or numerical representation of the kernel (containing the
geometry) and the convergence of the integral for Gk , Eqs. (9).

To better understand Eq. (9b), consider a multiphoton
ionization (MPI) process P (I ) ∝ Iα of arbitrary integer order
α in 2D. Integrating this P (I ) in Eq. (1) with Eq. (3b) gives
S(I0) ∝ Iα

0 /α. Here, A = 1/α is due to spatial averaging.
By using Eq. (8), we find that G = 1/α, so that B = 1,
thus, recovering the probability. While the physics of the
ionization process is, in general, more complex than MPI
alone (i.e., tunneling and over the barrier ionization may
contribute), we find it convenient to think of P (I ) in Eq. (9b)
as a multiphoton expansion (MPE). Note that MPE has a
broad range of applicability and is not limited to a particular
ionization mechanism.

Despite the lengthy derivation, recovering P (I ) from S(I0)
is relatively straightforward. In this work, ion yields having
roughly 60 data points (a typical experimental data set) were
splined in order to increase the number of points by an
order of magnitude. The splined data were then expanded
in a polynomial series to determine the values of Ak . The
volumetric coefficients Gk , provided by Eqs. (10), along with
the numerically determined values of Ak were then used to
recover P (I ) from Eq. (9b).

As a first demonstration of MPE, which can readily be
verified by the reader, an exactly solvable inversion problem
in 2D is carried out by using the model probability:

P (I ) =
(
I/IS1

)n1

1 + (
I/IS1

)n1
−

(
I/IS2

)n2

1 + (
I/IS2

)n2
. (11)

Here, n1 and n2 are MPI orders, and IS1 and IS2 are
saturation intensities chosen to coincide with those of Xe+

and Xe2+ ionized by 800 nm, 100-fs radiation (n1 = 8,
n2 = 14, IS1 ∼ 8 × 1013 W/cm2 and IS2 ∼ 2 × 1014 W/cm2).
The spatially averaged yield S(I0) = ln |(I/IS1 )n1 + 1|/n1 −
ln |(I/IS2 )n2 + 1|/n2 was found by inserting Eqs. (3b) and
(11) into Eq. (1) and integrating. By using the formalism of
MPE, the probability was found to be

P (I ) =
∑

k

(−1)k+1

[(
I

IS1

)kn1

−
(

I

IS2

)kn2
]
. (12)

The series in Eq. (12) is precisely the series expansion of
our model probability Eq. (11) and is plotted (solid curve)
in Fig. 2(a) along with its spatially averaged yield S(I0)
(dashed curve). The blue circles are the recovered probabilities
obtained by numerically fitting to I 1−m

0 S(I0) [Eq. (9a)] and
expanding P (I ) with Eq. (9b) (m = 1 and k = 36). For
comparison, we have also plotted the recovered probability
found using the ISS approach (red squares) [13]. As pointed
out in Ref. [4], ISS breaks down after saturation. In contrast,
the recovered probability, found using MPE, works for the
entire yield curve.

The effects of Im for various values of m in 2D are
demonstrated graphically in Fig. 2(b). For each set of data,
the order of the expansion was held constant k = 10: red
squares (m = 8) and blue circles (m = −8). In 2D, the values
of m are not restricted [Eq. (10b)] so that the expansions are

FIG. 2. (Color online) Reconstruction of a model probability in
2D: (a) model probability (black curve, see text), spatially averaged
probability (dashed curve), recovered probabilities, which use MPE
(blue circles), and recovered probabilities, which use ISS (red
squares; the plot is shifted down for better viewing); (b) recovered
probabilities, which use MPE from the spatially averaged probability
in (a) for m = 8 (red squares) and m = −8 (blue circles).

a Taylor-Laurent series, and P (I ) has terms proportional to
both I n (positive powers) and I−n (negative powers); here,
n = |k + m − 1|. When m > 1, the leading order terms are
proportional to I n, which tend to better describe the rising
edge of the probability, since ∂ log (P )/∂ log (I ) > 0 for these
terms. For m < 1, the lowest-order terms in the expansion
are proportional to I−n, which tend to better describe the de-
creasing part of the probability, since ∂ log (P )/∂ log (I ) < 0.
In contrast to the 2D case, integer values of m for the 3D
and 1D cases are restricted to m � 3 and m � 1, respectively
[Eqs. (10a) and (10c)]. The restrictions on m mean that, in 3D,
MPE is applicable to MPI processes of order �2 and for all or-
ders in 1D and 2D. Additionally, the recovered probabilities in
Fig. 2(b) (red squares) imply that the fitting of P (I ) in 3D will
slightly favor presaturation yields because of the restriction on
m. In all presented examples (except those demonstrating the
effects of different m values), m was chosen to be the lowest
positive integer, viz., m = 1 for 1D and 2D (m = 3 for 3D)
so that the leading term of the expansion is a constant (∝I 2).
Better fitting to postsaturation yields have been achieved by
increasing the order of the expansion, weighting data (by
introducing an additional factor for the fitting error in a certain
region), or by treating both regions separately.

As a first example in 3D, theoretically calculated ionization
probabilities of Xe+and Xe2+, found using ADK [3], were spa-
tially averaged and inverted using MPE (m = 3 and k = 36).
Excellent agreement was found between the theoretical (black
curves) and the recovered probabilities [blue squares and red
circles, Fig. 3(a)]. As our final example in 3D, yields of
experimentally obtained benzene parent molecular ions (to be
published elsewhere), obtained with the imaging spectrometer
of Ref. [12], are shown as the black circles in Fig. 3(b).
Because ions measured in this fashion are collected from a
region of nearly constant intensity, the data are expected to
resemble true ionization probabilities; therefore, we treat these
data as P (I ). To recover the probabilities from the artificially
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FIG. 3. (Color online) Reconstruction of Xe ionization probabili-
ties calculated with the ADK theory in 3D: (a) Calculated (black solid
curves) and recovered (blue squares and red circles) probabilities
of Xe+ and Xe2+; the spatially averaged probabilities for each
charge state are shown by the dashed curves. (b) Ion yields of the
benzene parent molecule obtained by using an imaging spectrometer
(black circles): artificially averaged benzene yield (dashed curve),
recovered probability, which uses MPE (blue squares), and recovered
probability obtained by weighting the postsaturation ionization yields
(red triangles, see text).

averaged data (dashed curve), we set m = 3 and k = 36. The
recovered probability (blue squares) is in agreement with
the measured “probabilities” by reproducing structures on
the leading edge of the curve, which have been attributed to
resonant multiphoton ionization through the S1 intermediate
state. This demonstration suggests that not only could this
previously unseen resonant multiphoton process have been
observed in data taken elsewhere (Ref. [19] and references
therein), but previous experimental data collected for other
systems could also be reanalyzed by using MPE. The red
triangles have been obtained by weighting the postsaturation
signal over the presaturation signal to favor fitting after
saturation. The red triangles reproduce the postsaturation

decrease and the overall structure of the probability. They do
not, however, reproduce the finer structures on the leading edge
of the curve, which is understandable because less significance
has been placed on these data. As an additional note concerning
the reproducibility of finer features in the probability curve
[as the one shown by the black circles in Fig. 3(b) between
∼ 2 × 1013 W/cm2 and ∼ 3.5 × 1013 W/cm2], our simula-
tions [performed by sequentially reducing the number of points
of S(I0), dashed curve in Fig. 3(b)] suggest that four data points
are sufficient to represent such a feature.

In our simulations, we have typically found that the
recovered probability converges to the input probability or
diverges with noticeable oscillations [i.e., the red squares and
the blue circles in Fig. 2(b)]. If the postsaturation probabilities
cannot be recovered or appear to be unreliable, then m can be
set to a larger positive value (to favor fitting to presaturation
yields), and the method of conserved probability of ionization
[4] may be applied. In this case, MPE takes the analogous
role in 3D that ISS plays in 2D. As a final note, as with most
inverse techniques, the signal-to-noise ratio plays an important
part in the inversion process [13]. An advantage of MPE in 3D
is the accumulation of larger amounts of data compared to
geometries of less dimensionality.

We have demonstrated an analytical inversion technique to
recover ionization probabilities from spatially averaged data
in an N -dimensional detection scheme. In contrast to ISS, our
2D inversion technique is capable of recovering postsatura-
tion probabilities. Finally, we are currently constructing an
imaging spectrometer of the type demonstrated in Ref. [12]
to investigate stabilization in atomic and molecular systems.
This spectrometer will be able to operate in either full-view or
imaging mode, which will allow for further testing of MPE by
comparing data taken by each mode of operation.
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