11,438 research outputs found
Modulation of Thermoelectric Power of Individual Carbon Nanotubes
Thermoelectric power (TEP) of individual single walled carbon nanotubes
(SWNTs) has been measured at mesoscopic scales using a microfabricated heater
and thermometers. Gate electric field dependent TEP-modulation has been
observed. The measured TEP of SWNTs is well correlated to the electrical
conductance across the SWNT according to the Mott formula. At low temperatures,
strong modulations of TEP were observed in the single electron conduction
limit. In addition, semiconducting SWNTs exhibit large values of TEP due to the
Schottky barriers at SWNT-metal junctions.Comment: to be published in Phys. Rev. Let
Detecting periodicity in experimental data using linear modeling techniques
Fourier spectral estimates and, to a lesser extent, the autocorrelation
function are the primary tools to detect periodicities in experimental data in
the physical and biological sciences. We propose a new method which is more
reliable than traditional techniques, and is able to make clear identification
of periodic behavior when traditional techniques do not. This technique is
based on an information theoretic reduction of linear (autoregressive) models
so that only the essential features of an autoregressive model are retained.
These models we call reduced autoregressive models (RARM). The essential
features of reduced autoregressive models include any periodicity present in
the data. We provide theoretical and numerical evidence from both experimental
and artificial data, to demonstrate that this technique will reliably detect
periodicities if and only if they are present in the data. There are strong
information theoretic arguments to support the statement that RARM detects
periodicities if they are present. Surrogate data techniques are used to ensure
the converse. Furthermore, our calculations demonstrate that RARM is more
robust, more accurate, and more sensitive, than traditional spectral
techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified
styl
Surrogate-assisted network analysis of nonlinear time series
The performance of recurrence networks and symbolic networks to detect weak
nonlinearities in time series is compared to the nonlinear prediction error.
For the synthetic data of the Lorenz system, the network measures show a
comparable performance. In the case of relatively short and noisy real-world
data from active galactic nuclei, the nonlinear prediction error yields more
robust results than the network measures. The tests are based on surrogate data
sets. The correlations in the Fourier phases of data sets from some surrogate
generating algorithms are also examined. The phase correlations are shown to
have an impact on the performance of the tests for nonlinearity.Comment: 9 pages, 5 figures, Chaos
(http://scitation.aip.org/content/aip/journal/chaos), corrected typo
Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion
Several models of flocking have been promoted based on simulations with
qualitatively naturalistic behavior. In this paper we provide the first direct
application of computational modeling methods to infer flocking behavior from
experimental field data. We show that this approach is able to infer general
rules for interaction, or lack of interaction, among members of a flock or,
more generally, any community. Using experimental field measurements of homing
pigeons in flight we demonstrate the existence of a basic distance dependent
attraction/repulsion relationship and show that this rule is sufficient to
explain collective behavior observed in nature. Positional data of individuals
over time are used as input data to a computational algorithm capable of
building complex nonlinear functions that can represent the system behavior.
Topological nearest neighbor interactions are considered to characterize the
components within this model. The efficacy of this method is demonstrated with
simulated noisy data generated from the classical (two dimensional) Vicsek
model. When applied to experimental data from homing pigeon flights we show
that the more complex three dimensional models are capable of predicting and
simulating trajectories, as well as exhibiting realistic collective dynamics.
The simulations of the reconstructed models are used to extract properties of
the collective behavior in pigeons, and how it is affected by changing the
initial conditions of the system. Our results demonstrate that this approach
may be applied to construct models capable of simulating trajectories and
collective dynamics using experimental field measurements of herd movement.
From these models, the behavior of the individual agents (animals) may be
inferred
Spatial accessibility and social inclusion: The impact of Portugal's last health reform
Health policies seek to promote access to health care and should provide appropriate geographical accessibility to each demographical functional group. The dispersal demand of health‐careservices and the provision for such services atfixed locations contribute to the growth of inequality intheir access. Therefore, the optimal distribution of health facilities over the space/area can lead toaccessibility improvements and to the mitigation of the social exclusion of the groups considered mostvulnerable. Requiring for such, the use of planning practices joined with accessibility measures. However,the capacities of Geographic Information Systems in determining and evaluating spatial accessibility inhealth system planning have not yet been fully exploited. This paper focuses on health‐care services planningbased on accessibility measures grounded on the network analysis. The case study hinges on mainlandPortugal. Different scenarios were developed to measure and compare impact on the population'saccessibility. It distinguishes itself from other studies of accessibility measures by integrating network data ina spatial accessibility measure: the enhanced two‐stepfloating catchment area. The convenient location forhealth‐care facilities can increase the accessibility standards of the population and consequently reducethe economic and social costs incurred. Recently, the Portuguese government implemented a reform thataimed to improve, namely, the access and equity in meeting with the most urgent patients. It envisaged,in terms of equity, the allocation of 89 emergency network points that ensured more than 90% of thepopulation be within 30 min from any one point in the network. Consequently, several emergency serviceswere closed, namely, in rural areas. This reform highlighted the need to improve the quality of the emergencycare, accessibility to each care facility, and equity in their access. Hence, accessibility measures becomean efficient decision‐making tool, despite its absence in effective practice planning. According to anapplication of this type of measure, it was possible to verify which levels of accessibility were decreased,including the most disadvantaged people, with a larger time of dislocation of 12 min between 2001 and 2011
Recommended from our members
Results of an aqueous source term model for a radiological risk assessment of the Drigg LLW Site, U.K.
A radionuclide source term model has been developed which simulates the biogeochemical evolution of the Drigg low level waste (LLW) disposal site. The DRINK (DRIgg Near field Kinetic) model provides data regarding radionuclide concentrations in groundwater over a period of 100,000 years, which are used as input to assessment calculations for a groundwater pathway. The DRINK model also provides input to human intrusion and gaseous assessment calculations through simulation of the solid radionuclide inventory. These calculations are being used to support the Drigg post closure safety case. The DRINK model considers the coupled interaction of the effects of fluid flow, microbiology, corrosion, chemical reaction, sorption and radioactive decay. It represents the first direct use of a mechanistic reaction-transport model in risk assessment calculations
QSO's from Galaxy Collisions with Naked Black Holes
In the now well established conventional view (see Rees [1] and references
therein), quasi-stellar objects (QSOs) and related active galactic nuclei (AGN)
phenomena are explained as the result of accretion of plasma onto giant black
holes which are postulated to form via gravitational collapse of the high
density regions in the centers of massive host galaxies. This model is
supported by a wide variety of indirect evidence and seems quite likely to
apply at least to some observed AGN phenomena. However, one surprising set of
new Hubble Space Telescope (HST) observations [2-4] directly challenges the
conventional model, and the well known evolution of the QSO population raises
some additional, though not widely recognized, difficulties. We propose here an
alternative possibility: the Universe contains a substantial independent
population of super-massive black holes, and QSO's are a phenomenon that occurs
due to their collisions with galaxies or gas clouds in the intergalactic medium
(IGM). This hypothesis would naturally explain why the QSO population declines
very rapidly towards low redshift, as well as the new HST data.Comment: plain TeX file, no figures, submitted to Natur
The Patient Assessment of Chronic Illness Care produces measurements along a single dimension: results from a Mokken analysis.
BACKGROUND: As the worldwide prevalence of chronic illness increases so too does the demand for novel treatments to improve chronic illness care. Quantifying improvement in chronic illness care from the patient perspective relies on the use of validated patient-reported outcome measures. In this analysis we examine the psychometric and scaling properties of the Patient Assessment of Chronic Illness Care (PACIC) questionnaire for use in the United Kingdom by applying scale data to the non-parametric Mokken double monotonicity model. METHODS: Data from 1849 patients with long-term conditions in the UK who completed the 20-item PACIC were analysed using Mokken analysis. A three-stage analysis examined the questionnaire's scalability, monotonicity and item ordering. An automated item selection procedure was used to assess the factor structure of the scale. Analysis was conducted in an 'evaluation' dataset (n = 956) and results were confirmed using an independent 'validation' (n = 890) dataset. RESULTS: Automated item selection procedures suggested that the 20 items represented a single underlying trait representing "patient assessment of chronic illness care": this contrasts with the multiple domains originally proposed. Six items violated invariant item ordering and were removed. The final 13-item scale had no further issues in either the evaluation or validation samples, including excellent scalability (Ho = .50) and reliability (Rho = .88). CONCLUSIONS: Following some modification, the 13-items of the PACIC were successfully fitted to the non-parametric Mokken model. These items have psychometrically robust and produce a single ordinal summary score. This score will be useful for clinicians or researchers to assess the quality of chronic illness care from the patient's perspective
Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite
Electric field effect devices based on mesoscopic graphite are fabricated for
galvanomagnetic measurements. Strong modulation of magneto-resistance and Hall
resistance as a function of gate voltage is observed as sample thickness
approaches the screening length. Electric field dependent Landau level
formation is detected from Shubnikov de Haas oscillations in
magneto-resistance. The effective mass of electron and hole carriers has been
measured from the temperature dependant behavior of these oscillations.Comment: 4 pages, 4 figures included, submitted to Phys. Rev. Let
- …
