1,760 research outputs found

    Undaria pinnatifida : A case study to highlight challenges in marine invasion ecology and management

    Get PDF
    Marine invasion ecology and management have progressed significantly over the last 30 years although many knowledge gaps and challenges remain. The kelp Undaria pinnatifida, or “Wakame,” has a global non-native range and is considered one of the world's “worst” invasive species. Since its first recorded introduction in 1971, numerous studies have been conducted on its ecology, invasive characteristics, and impacts, yet a general consensus on the best approach to its management has not yet been reached. Here, we synthesize current understanding of this highly invasive species and adopt Undaria as a case study to highlight challenges in wider marine invasion ecology and management. Invasive species such as Undaria are likely to continue to spread and become conspicuous, prominent components of coastal marine communities. While in many cases, marine invasive species have detectable deleterious impacts on recipient communities, in many others their influence is often limited and location specific. Although not yet conclusive, Undaria may cause some ecological impact, but it does not appear to drive ecosystem change in most invaded regions. Targeted management actions have also had minimal success. Further research is needed before well-considered, evidence-based management decisions can be made. However, if Undaria was to become officially unmanaged in parts of its non-native range, the presence of a highly productive, habitat former with commercial value and a broad ecological niche, could have significant economic and even environmental benefit. How science and policy reacts to the continued invasion of Undaria may influence how similar marine invasive species are handled in the future

    Environmental and ecological factors influencing the spillover of the non-native kelp, Undaria pinnatifida, from marinas into natural rocky reef communities

    Get PDF
    The non-native kelp, Undaria pinnatifida, is considered one of the world’s worst invasive species. The northeast Atlantic is a hotspot of Undaria invasion, yet there is limited knowledge on its invasion dynamics. In the UK its distribution is strongly associated with artificial structures, primarily marina and harbour pontoons, with relatively few records of Undaria on natural substrates. Here, the southwest UK is used as a case region, to explicitly link Undaria distribution-abundance patterns in artificial marina habitats with those in natural rocky reef habitats. Using a mixture of in situ recording and video survey techniques, Undaria was found at all thirteen marina sites surveyed; but in only 17 of 35 rocky reef sites, all of which were in 2 of the 5 larger systems surveyed (Plymouth Sound and Torbay). The distribution-abundance patterns of Undaria at reef sites were analysed using zero-inflated models. The probability of finding Undaria on rocky reef increased with increasing proximity to marinas with high abundances of Undaria. Total propagule pressure from marinas also increased the probability of occurrence, and was positively related to Undaria abundance and cover at reef sites. Increases in the cover of native kelps, Laminaria spp., and wave exposure at reef sites were linked to a reduced probability of Undaria occurrence, and lower abundance and cover. Identifying high risk areas, natural boundaries and factors affecting the spread and abundance of non-native species in natural habitats is key to future management prioritisation. Where Undaria is confined to artificial substrates management may be deemed a low priority. However, the results of this study suggest that controlling the abundance and propagule pressure in artificial habitats may limit, to some extent, the spillover of Undaria into natural rocky reef habitats, where it has the potential to interact with and influence native communities

    The Contribution of Genetic Resources and Diversity to Wheat Productivity: A Case from the Punjab of Pakistan

    Get PDF
    This study makes use of data on wheat production in the Punjab of Pakistan from 1979 to 1985 to 1) examine patterns of varietal diversity in farmers' fields both at the regional and district levels and 2) identify how and in what ways genetic resources have contributed to wheat productivity and yield stability-important considerations to farmers and national authorities where wheat is a staple food crop. Five indicators are used to describe the system of wheat genetic resource use and diversity in farmers' fields. The contribution of farmers' previous selections is expressed as the number of different landraces appearing in the pedigree of a cultivar . The contribution of scientific breeding efforts is expressed as the number of parental combination appearing in a cultivar's pedigree. The diversity of wheat varieties in a geographical area, as related to productivity, is captured by measures of area concentration (diversity in space) and age of varieties (diversity in time). Finally, the relative dissimilarity of cultivars grown in a geographical area is measured using a distance indicator constructed from genealogical information. Disaggregated analysis at the district level demonstrates how diversity patterns are influenced by the production environment and by possible differences in the availability of suitable varieties. The study finds no indication that modern plant breeding technologies have reduced diversity among the wheats grown in the districts of the Punjab of Pakistan during the study period, although brief. Analysis of the genealogical background of the varieties grown by farmers reveals patterns of greater use of genetic resources and dissimilarity of parentage. For some factors related to genetic resource use and diversity, there are large differences between production environments (specifically, irrigated and rainfed areas) and individual districts, which suggest that efforts to increase genetic diversity in farmers' fields will require policy instruments tailored to the individual circumstances of each production environment. Econometric results suggest that greater genealogical dissimilarity and higher rates of varietal replacement are likely to have positive payoffs relative to aggregate yield stability, while in areas where production constraints inhibit farmers' ability to exploit the yield potential of their varieties, better production management is likely to have greater yield enhancing effects than the varietal attributes related to diversity.Crop Production/Industries,

    X-ray Pulsations in the Supersoft X-ray Binary CAL 83

    Full text link
    X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.Comment: revised text; 11 pages and 3 figures; accepted for publication in the Astronomical Journa

    Removal treatments alter the recruitment dynamics of a global marine invader - Implications for management feasibility

    Get PDF
    Frameworks designed to prioritise the management of invasive non-native species (INNS) must consider many factors, including their impacts on native biodiversity, ecosystem services, and human health. Management feasibility should also be foremost in any prioritisation process, but is often overlooked, particularly in the marine environment. The Asian kelp, Undaria pinnatifida, is one of the most cosmopolitan marine INNS worldwide and recognised as a priority species for monitoring in the UK and elsewhere. Here, experimental monthly removals of Undaria (from 0.2 m2 patches of floating pontoon) were conducted at two marinas to investigate their influence on recruitment dynamics and the potential implications for management feasibility. Over the 18-month experiment there was no consistent reduction in Undaria recruitment following removals. Cleaning of pontoon surfaces (i.e. removal of all biota) led to significant short-term reductions in recruitment but caused a temporal shift in normal recruitment patterns. Non-selective removal (i.e. all macroalgae) generally promoted recruitment, while selective removal (i.e. Undaria only) had some limited success in reducing overall recruitment. The varied results indicate that the feasibility of limiting Undaria is likely to be very low at sites with established populations and high propagule pressure. However, where there are new incursions, a mixture of cleaning of invaded surfaces prior to normal periods of peak recruitment followed by selective removal may have some potential in limiting Undaria populations within these sites. Multi-factorial experimental manipulations such as this are useful tools for gathering quantitative evidence to support the prioritisation of management measures for marine INNS

    The orientation-preserving diffeomorphism group of S^2 deforms to SO(3) smoothly

    Full text link
    Smale proved that the orientation-preserving diffeomorphism group of S^2 has a continuous strong deformation retraction to SO(3). In this paper, we construct such a strong deformation retraction which is diffeologically smooth.Comment: 16 page

    Subtidal macroalgal richness, diversity and turnover, at multiple spatial scales, along the southwestern Australian coastline

    Get PDF
    Patterns of species richness are governed by processes that act at vastly different spatial scales. In the marine system of southwest Australia, macroalgal assemblage structure and richness is thought to be strongly influenced by both the Leeuwin Current, which acts at large regional spatial scales, and small-scale processes such as competition, wave disturbance and habitat heterogeneity. We examined macroalgal species richness and diversity at multiple spatial scales using a three-factor hierarchal design. Spatial extents ranged from metres (between quadrats) to many hundreds of kilometres (between regions), and the study encompassed almost 2000 km of temperate coastline. Macroalgal assemblages were highly speciose and the number, identity, and diversity of species varied considerably at all spatial scales. Small scale variability, at the scale of site or quadrat, contributed most to total variation in species richness and diversity, suggesting that small-scale processes are important drivers of ecological pattern in this system. Species richness, diversity and taxonomic distinctness increased sequentially along the coastline, from warmer to cooler waters. Small scale variability was most likely maintained by wave disturbance and habitat heterogeneity at these scales, while regional scale diversity and richness clines were attributed to the fact that most species had cool-water affinities and the southern coast of Australia is a hotspot of floral speciation and diversity. Macroalgal assemblages in southwest Australia are speciose and largely endemic, and biodiversity patterns are structured by multiple processes operating at multiple spatial scale

    Valuation and sustainable management of crop and livestock biodiversity: a review of applied economics literature

    Get PDF
    This paper is part of the follow-up to the workshop “Managing Agricultural Biodiversity for Sustainable Development” organized by the International Plant Genetic Resources Institute (IPGRI) for the CGIAR System-wide Genetic Resources Programme (SGRP) and hosted by the World Agroforestry Centre (ICRAF), Nairobi, Kenya (23-25 October, 2003, Nairobi, Kenya)

    Resilience of New Zealand indigenous forest fragments to impacts of livestock and pest mammals

    Get PDF
    A number of factors have combined to diminish ecosystem integrity in New Zealand indigenous lowland forest fragments surrounded by intensively grazed pasture. Livestock grazing, mammalian pests, adventive weeds and altered nutrient input regimes are important drivers compounding the changes in fragment structure and function due to historical deforestation and fragmentation. We used qualitative systems modelling and empirical data from Beilschmiedia tawa dominated lowland forest fragments in the Waikato Region to explore the relevance of two common resilience paradigms – engineering resilience and ecological resilience – for addressing the conservation management of forest fragments into the future. Grazing by livestock and foraging/predation by introduced mammalian pests both have direct detrimental impacts on key structural and functional attributes of forest fragments. Release from these perturbations through fencing and pest control leads to partial or full recovery of some key indicators (i.e. increased indigenous plant regeneration and cover, increased invertebrate populations and litter mass, decreased soil fertility and increased nesting success) relative to levels seen in larger forest systems over a range of timescales. These changes indicate that forest fragments do show resilience consistent with adopting an engineering resilience paradigm for conservation management, in the landscape context studied. The relevance of the ecological resilience paradigm in these ecosystems is obscured by limited data. We characterise forest fragment dynamics in terms of changes in indigenous species occupancy and functional dominance, and present a conceptual model for the management of forest fragment ecosystems

    Hodge Theory on Metric Spaces

    Get PDF
    Hodge theory is a beautiful synthesis of geometry, topology, and analysis, which has been developed in the setting of Riemannian manifolds. On the other hand, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step towards understanding the geometry of vision. The appendix by Anthony Baker provides a separable, compact metric space with infinite dimensional \alpha-scale homology.Comment: appendix by Anthony W. Baker, 48 pages, AMS-LaTeX. v2: final version, to appear in Foundations of Computational Mathematics. Minor changes and addition
    corecore