49 research outputs found

    Cocaine Self-Administration and Abstinence Modulate NMDA Receptor Subunits and Active Zone Proteins in the Rat Nucleus Accumbens

    Get PDF
    Cocaine-induced plasticity in the glutamatergic transmission and its N-methyl-d-aspartate (NMDA) receptors are critically involved in the development of substance use disorder. The presynaptic active zone proteins control structural synaptic plasticity; however, we are still far from understanding the molecular determinants important for cocaine seeking behavior. The aim of this study was to investigate the effect of cocaine self-administration and different conditions of cocaine forced abstinence on the composition of the NMDA receptor subunits and on the levels of active zone proteins, i.e., Ras-related protein 3A (Rab3A), Rab3 interacting molecules 1 (RIM1) and mammalian uncoordinated protein 13 (Munc13) in the rat nucleus accumbens. We found an up-regulation of the accumbal levels of GluN1 and GluN2A following cocaine self-administration that was paralleled by an increase of Munc13 and RIM1 levels. At the same time, we also demonstrated that different conditions of cocaine abstinence abolished changes in NMDA receptor subunits (except for higher GluN1 levels after cocaine abstinence with extinction training), while an increase in the Munc13 concentration was shown in rats housed in an enriched environment. In conclusion, cocaine self-administration is associated with the specific up-regulation of the NMDA receptor subunit composition and is related with new presynaptic targets controlling neurotransmitter release. Moreover, changes observed in cocaine abstinence with extinction training and in an enriched environment in the levels of NMDA receptor subunit and in the active zone protein, respectively, may represent a potential regulatory step in cocaine-seeking behavior

    Effect of Fasciola hepatica proteins on the functioning of rat hepatocytes

    Get PDF
    Fasciolosis is a hepatic parasitic infection that affects many mammal species and creates a great economic and veterinary problem. Molecular mechanisms of parasite–hepatocyte interactions have not been precisely characterized yet. Therefore, the aim of the study was to investigate alterations in the metabolic activity of rat liver cells exposed to Fasciola hepatica somatic proteins. Hepatocytes were incubated with 0–1 mg/ml of fluke's somatic proteins for various periods of time. Afterward, changes in hepatocytes metabolic activity were determined with MTT and enzyme leakage tests. Hepatocytes' capacity to synthesize albumin was also investigated. It was observed that protein concentration, as well as longevity of their action, influenced metabolic activity of rat liver cells. Diminution of hepatocytes survival rate, an increase in enzyme leakage and altered synthetic capacity after treatment with parasite's proteins were reported. It is concluded that somatic proteins of F. hepatica may play an important role in liver cell damaging

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    Characterization of micro machined surface from TRIP/TWIP steels

    No full text
    In this contribution micro machining induced changes in surface morphology, including phase transformation from fcc-austenite into hcp- and bcc-martensite as well as defined surface topography of TRIP/TWIP steel was characterized by scanning electron microscopy using electron backscatter diffraction (EBSD) technique. For this, applying micro milling and micro grinding processes with tool diameter of 45 ”m, structures were machined into flat specimen surfaces of X30MnAl17–1 steel in defined areas previously characterized by EBSD

    Characterization of micro machined surface from TRIP/TWIP steels

    No full text
    In this contribution micro machining induced changes in surface morphology, including phase transformation from fcc-austenite into hcp- and bcc-martensite as well as defined surface topography of TRIP/TWIP steel was characterized by scanning electron microscopy using electron backscatter diffraction (EBSD) technique. For this, applying micro milling and micro grinding processes with tool diameter of 45 ”m, structures were machined into flat specimen surfaces of X30MnAl17–1 steel in defined areas previously characterized by EBSD
    corecore