114 research outputs found

    Strong magnetic field in W75N OH maser flare

    Full text link
    A flare of OH maser emission was discovered in W75N in 2000. Its location was determined with the VLBA to be within 110 au from one of the ultracompact H II regions, VLA2. The flare consisted of several maser spots. Four of the spots were found to form Zeeman pairs, all of them with a magnetic field strength of about 40 mG. This is the highest ever magnetic field strength found in OH masers, an order of magnitude higher than in typical OH masers. Three possible sources for the enhanced magnetic field are discussed: (i) the magnetic field of the exciting star dragged out by the stellar wind; (ii) the general interstellar field in the gas compressed by the MHD shock; and (iii) the magnetic field of planets which orbit the exciting star and produce maser emission in gaseous envelopes.Comment: 5 pages, 3 figures. to be published in MNRA

    Measurements of kilometer cosmic radioemission in interplanetary space

    Get PDF
    Kilometer cosmic radioemission measurements in interplanetary space from Zond 2, Zond 3, and Venera 2 probe

    Detection of new sources of methanol emission at 107 and 108 GHz with the Mopra telescope

    Get PDF
    A southern hemisphere survey of methanol emission sources in two millimeter wave transitions has been carried out using the ATNF Mopra millimetre telescope. Sixteen emission sources have been detected in the 3(1)-4(0)A+ transition of methanol at 107 GHz, including six new sources exhibiting class II methanol maser emission features. Combining these results with the similar northern hemisphere survey, a total of eleven 107-GHz methanol masers have been detected. A survey of the methanol emission in the 0(0)-1(-1)E transition at 108 GHz resulted in the detection of 16 sources; one of them showing maser characteristics. This is the first methanol maser detected at 108 GHz, presumably of class II. The results of LVG statistical equilibrium calculations confirm the classification of these new sources as a class II methanol masers.Comment: 11 pages, 6 figures, accepted for publication in MNRAS, mn.sty include

    The brightest OH maser in the sky: a flare of emission in W75 N

    Full text link
    A flare of maser radio emission in the OH-line 1665 MHz has been discovered in the star forming region W75 N in 2003, with the flux density of about 1000 Jy. At the time it was the strongest OH maser detected during the whole history of observations since the discovery of cosmic masers in 1965. The flare emission is linearly polarized with a degree of polarization near 100%. A weaker flare with a flux of 145 Jy was observed in this source in 2000 - 2001, which was probably a precursor of the powerful flare. Intensity of two other spectral features has decreased after beginning of the flare. Such variation of the intensity of maser condensation emission (increasing of one and decreasing of the other) can be explained by passing of the magneto hydrodynamic shock across regions of enhanced gas concentration.Comment: 9 pages with 2 figures, accepted for publication in Astronomy Letter

    Detection of a new methanol maser line with the Kitt Peak 12-m telescope by remote observing from Moscow

    Get PDF
    A new methanol maser line 6(-1)-5(0)E at 133 GHz was detected with the 12-m Kitt Peak radio telescope using remote observation mode from Moscow. Moderately strong, narrow maser lines were found in DR21(OH), DR21-W, OMC-2, M8E, NGC2264, L379, W33-Met. The masers have similar spectral features in other transitions of methanol-E at 36 and 84 GHz, and in transitions of methanol-A at 44 and 95 GHz. All these are Class I transitions, and the new masers also belong to Class I. In two other methanol transitions near 133 GHz, 5(-2)-6(-1)E and 6(2)-7(1)A+, only thermal emission was detected in some sources. Several other sources with wider lines in the transition 6(-1)-5(0)E also may be masers, since they do not show any emission at the two other methanol transitons near 133 GHz. These are NGC2071, S231, S255, GGD27, also known as Class I masers. The ratio of intensities and line widths of the 133 GHz masers and 44 GHz masers is consistent with the saturated maser model, in which the line rebroadening with respect to unsaturated masers is suppressed by cross relaxation due to elastic collisions.Comment: 4 pages, AASTeX text, uses aasms4.sty, 2 Postscript figures, to be published in Ap
    • …
    corecore