1,298 research outputs found
Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica)
(1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CAIX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were
investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood.
(2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90 ) or left unturned. From 48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was processed identically.
(3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96h of incubation. Only very low levels were found in blood.
(4) Blastoderm CA II gene expression was greatest at 48 and 54h of incubation, subsequently declining to much lower levels and una ected by turning. Blood CA II gene expression was about 25-fold greater than that in the blastoderm.
(5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning.
CA XII did not amplify and CA XIV was present at unquantifiable low levels.
(6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation.
in embryos of turned eggs
Cutoff for the Ising model on the lattice
Introduced in 1963, Glauber dynamics is one of the most practiced and
extensively studied methods for sampling the Ising model on lattices. It is
well known that at high temperatures, the time it takes this chain to mix in
on a system of size is . Whether in this regime there is
cutoff, i.e. a sharp transition in the -convergence to equilibrium, is a
fundamental open problem: If so, as conjectured by Peres, it would imply that
mixing occurs abruptly at for some fixed , thus providing
a rigorous stopping rule for this MCMC sampler. However, obtaining the precise
asymptotics of the mixing and proving cutoff can be extremely challenging even
for fairly simple Markov chains. Already for the one-dimensional Ising model,
showing cutoff is a longstanding open problem.
We settle the above by establishing cutoff and its location at the high
temperature regime of the Ising model on the lattice with periodic boundary
conditions. Our results hold for any dimension and at any temperature where
there is strong spatial mixing: For this carries all the way to the
critical temperature. Specifically, for fixed , the continuous-time
Glauber dynamics for the Ising model on with periodic boundary
conditions has cutoff at , where is
the spectral gap of the dynamics on the infinite-volume lattice. To our
knowledge, this is the first time where cutoff is shown for a Markov chain
where even understanding its stationary distribution is limited.
The proof hinges on a new technique for translating to mixing
which enables the application of log-Sobolev inequalities. The technique is
general and carries to other monotone and anti-monotone spin-systems.Comment: 34 pages, 3 figure
The Taste of Carbonation
Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO_2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO_2
Respiratory impedance in healthy unsedated South African infants: Effects of maternal smoking
Background and objective: Non-invasive techniques for measuring lung mechanics in infants are needed for a better understanding of lung growth and function, and to study the effects of prenatal factors on subsequent lung growth in healthy infants. The forced oscillation technique requires minimal cooperation from the individual but has rarely been used in infants. The study aims to assess the use of the forced oscillation technique to measure the influence of antenatal exposures on respiratory mechanics in unsedated infants enrolled in a birth cohort study in Cape Town, South Africa. Methods: Healthy term infants were studied at 6–10 weeks of age using the forced oscillation technique. Respiratory impedance was measured in the frequency range 8–48 Hz via a face mask during natural sleep. Respiratory system resistance, compliance and inertance were calculated from the impedance spectra. Results: Of 177 infants tested, successful measurements were obtained in 164 (93%). Median (25–75%) values for resistance, compliance and inertance were 50.2 (39.5–60.6) cmH2O.s.L−1, 0.78 (0.61–0.99) mL.cmH2O−1 and 0.062 (0.050–0.086) cmH2O.s2.L−1, respectively. As a group, male infants had 16% higher resistance (P = 0.006) and 18% lower compliance (P = 0.02) than females. Infants whose mothers smoked during pregnancy had a 19% lower compliance than infants not exposed to tobacco smoke during pregnancy (P = 0.005). Neither maternal HIV infection nor ethnicity had a significant effect on respiratory mechanics. Conclusions: The forced oscillation technique is sensitive enough to demonstrate the effects of tobacco smoke exposure and sex in respiratory mechanics in healthy infants. This technique will facilitate assessing perinatal influences of lung function in infancy
Computer-controlled apparatus for automated development of continuous flow methods
An automated apparatus to assist in the development of analytical
continuous flow methods is described. The system is capable of
controlling and monitoring a variety of pumps, valves, and
detectors through an IBM PC-AT compatible computer. System
components consist of two types of peristaltic pumps (including a
multiple pump unit), syringe pumps, electrically and pneumatically
actuated valves, and an assortment of spectrophotometric and
electrochemical detectors. Details of the interface circuitry are given
where appropriate. To demonstrate the utility of the system, an
automatically generated response surface is presented for the flow
injection determination of iron(II) by its reaction with
1,10-phenanthroline
Children's environmental health: an under-recognised area in paediatric health care
The knowledge that the environment in which we live, grow and play, can have negative or positive impacts on our health and development is not new. However the recognition that adverse environments can significantly and specifically affect the growth and development of a child from early intrauterine life through to adolescence, as well as impact their health later in adulthood, is relatively recent and has not fully reached health care providers involved in paediatric care
Gene expression and matrix turnover in overused and damaged tendons
Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries
- …