106 research outputs found

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    P2 purinergic receptor modulation of cytokine production

    Get PDF
    Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y6 receptor mediated impact on interleukin (IL)-8 production, (2) P2Y11 receptor-mediated affects on IL-12/23 output, and (3) P2X7 receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases

    Poor food and nutrient intake among Indigenous and non-Indigenous rural Australian children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to describe the food and nutrient intake of a population of rural Australian children particularly Indigenous children. Participants were aged 10 to 12 years, and living in areas of relative socio-economic disadvantage on the north coast of New South Wales.</p> <p>Methods</p> <p>In this descriptive cross-sectional study 215 children with a mean age of 11.30 (SD 0.04) years (including 82 Indigenous children and 93 boys) completed three 24-hour food recalls (including 1 weekend day), over an average of two weeks in the Australian summer of late 2005.</p> <p>Results</p> <p>A high proportion of children consumed less than the Australian Nutrient Reference Values for fibre (74-84% less than Adequate Intake (AI)), calcium (54-86% less than Estimated Average Requirement (EAR)), folate and magnesium (36% and 28% respectively less than EAR among girls), and the majority of children exceeded the upper limit for sodium (68-76% greater than Upper Limit (UL)). Energy-dense nutrient-poor (EDNP) food consumption contributed between 45% and 49% to energy. Hot chips, sugary drinks, high-fat processed meats, salty snacks and white bread were the highest contributors to key nutrients and sugary drinks were the greatest <it>per capita </it>contributor to daily food intake for all. <it>Per capita </it>intake differences were apparent by Indigenous status. Consumption of fruit and vegetables was low for all children. Indigenous boys had a higher intake of energy, macronutrients and sodium than non-Indigenous boys.</p> <p>Conclusions</p> <p>The nutrient intake and excessive EDNP food consumption levels of Australian rural children from disadvantaged areas are cause for concern regarding their future health and wellbeing, particularly for Indigenous boys. Targeted intervention strategies should address the high consumption of these foods.</p

    Chemotactic activity of extracellular nucleotideson human immune cells.

    Get PDF
    Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5–triphosphate (UTP) and uridine 5–diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation

    P2X7 receptor: Death or life?

    Get PDF
    The P2X7 plasma membrane receptor is an intriguing molecule that is endowed with the ability to kill cells, as well as to activate many responses and even stimulate proliferation. Here, the authors give an overview on the multiplicity and complexity of P2X7-mediated responses, discussing recent information on this receptor. Particular attention has been paid to early and late signs of apoptosis and necrosis linked to activation of the receptor and to the emerging field of P2X7 function in carcinogenesis

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Factors associated with serum 25-hydroxyvitamin D concentrations in older people in Europe: the EUREYE study.

    Get PDF
    BACKGROUND/OBJECTIVES: We aimed to describe serum 25-hydroxyvitamin D (25OHD) concentrations in older Europeans and to investigate associations between 25OHD and lifestyle factors, including dietary intake and supplement use. SUBJECTS/METHODS: Men and women aged ≥ 65 years were recruited from seven centres across north to south Europe. Serum 25OHD2 and 25OHD3 concentrations were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) in 4495 samples and total 25OHD (25OHD2 + 25OHD3) was adjusted for season of blood collection. RESULTS: The mean (25th, 75th quartile) of seasonally adjusted 25OHD was 46 (34, 65) nmol/L, with the highest concentration of 25OHD in Bergen [61 (49, 79) nmol/L], and the lowest in Paris [36 (24, 57) nmol/L)]. Vitamin D deficiency (25-50 nmol/L) and vitamin D insufficiency (50-75 nmol/L) were found in 41 and 33% of the population, respectively. In multivariable analysis controlled for confounders, seasonally adjusted 25OHD concentrations were significantly (p < 0.05) lower in smokers and participants with self-reported diabetes and higher with increasing dietary vitamin D, and supplement use with fish liver oil, omega-3, and vitamin D. Additionally, in further analysis excluding Bergen, 25OHD was associated with higher intakes of oily fish and increasing UVB exposure. We observed low concentrations of 25OHD in older people in Europe. CONCLUSIONS: Our findings of the higher 25OHD concentrations in supplement users (omega-3 fish oil, fish liver oil, vitamin D) add to current recommendations to reduce vitamin D deficiency. We were unable to fully assess the role of dietary vitamin D as we lacked information on vitamin D-fortified foods
    corecore