1,078 research outputs found

    First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory

    Full text link
    We report on the first long-term application of squeezed vacuum states of light to improve the shot-noise-limited sensitivity of a gravitational-wave observatory. In particular, squeezed vacuum was applied to the German/British detector GEO600 during a period of three months from June to August 2011, when GEO600 was performing an observational run together with the French/Italian Virgo detector. In a second period squeezing application continued for about 11 months from November 2011 to October 2012. During this time, squeezed vacuum was applied for 90.2% (205.2 days total) of the time that science-quality data was acquired with GEO600. Sensitivity increase from squeezed vacuum application was observed broad-band above 400Hz. The time average of gain in sensitivity was 26% (2.0dB), determined in the frequency band from 3.7kHz to 4.0kHz. This corresponds to a factor of two increase in observed volume of the universe, for sources in the kHz region (e.g. supernovae, magnetars). We introduce three new techniques to enable stable long-term application of squeezed light, and show that the glitch-rate of the detector did not increase from squeezing application. Squeezed vacuum states of light have arrived as a permanent application, capable of increasing the astrophysical reach of gravitational-wave detectors.Comment: 4 pages, 4 figure

    Information and Multi-Period Optimal Income Taxation with Government Commitment

    Get PDF
    The optimal income taxation problem has been extensively studied in one- period models. When consumers work for many periods, this paper analyzes what information, if any, that the government learns about abilities in one period can be used in later periods to attain more redistribution than in a one- period world. liken the government must commit itself to future tax schedules, the gains cane from relaxing self-selection constraints by intertemporal nonstationarity. The effect of nonstationarity is analogous to that of randomization in one-period models. In a model with two ability classes it is shown that the key use of information is that only a single lifetime self-selection constraint for each type of consumer must be imposed. Sane necessary and sufficient conditions for randomization or nonstationarity are given. The planner can make additional use of the information when individual and social rates of time discounting differ. In this case, the limiting tax schedule is a nondistorting one if the government has a lower discount rate than individuals.

    How does a protein search for the specific site on DNA: the role of disorder

    Full text link
    Proteins can locate their specific targets on DNA up to two orders of magnitude faster than the Smoluchowski three-dimensional diffusion rate. This happens due to non-specific adsorption of proteins to DNA and subsequent one-dimensional sliding along DNA. We call such one-dimensional route towards the target "antenna". We studied the role of the dispersion of nonspecific binding energies within the antenna due to quasi random sequence of natural DNA. Random energy profile for sliding proteins slows the searching rate for the target. We show that this slowdown is different for the macroscopic and mesoscopic antennas.Comment: 4 pages, 4 figure

    Estimates for practical quantum cryptography

    Get PDF
    In this article I present a protocol for quantum cryptography which is secure against attacks on individual signals. It is based on the Bennett-Brassard protocol of 1984 (BB84). The security proof is complete as far as the use of single photons as signal states is concerned. Emphasis is given to the practicability of the resulting protocol. For each run of the quantum key distribution the security statement gives the probability of a successful key generation and the probability for an eavesdropper's knowledge, measured as change in Shannon entropy, to be below a specified maximal value.Comment: Authentication scheme corrected. Other improvements of presentatio

    Complete physical simulation of the entangling-probe attack on the BB84 protocol

    Get PDF
    We have used deterministic single-photon two qubit (SPTQ) quantum logic to implement the most powerful individual-photon attack against the Bennett-Brassard 1984 (BB84) quantum key distribution protocol. Our measurement results, including physical source and gate errors, are in good agreement with theoretical predictions for the Renyi information obtained by Eve as a function of the errors she imparts to Alice and Bob's sifted key bits. The current experiment is a physical simulation of a true attack, because Eve has access to Bob's physical receiver module. This experiment illustrates the utility of an efficient deterministic quantum logic for performing realistic physical simulations of quantum information processing functions.Comment: 4 pages, 5 figure

    Acute respiratory distress syndrome: new definition, current and future therapeutic options.

    Get PDF
    Since acute respiratory distress syndrome (ARDS) was first described in 1967 there has been large number of studies addressing its pathogenesis and therapies. Despite this intense research activity, there are very few effective therapies for ARDS other than the use of lung protection strategies. This lack of therapeutic modalities is not only related to the complex pathogenesis of this syndrome but also the insensitive and nonspecific diagnostic criteria to diagnose ARDS. This review article will summarize the key features of the new definition of ARDS, and provide a brief overview of innovative therapeutic options that are being assessed in the management of ARDS
    corecore