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We analyze the optimal income tax problem when consumers work for many periods. Can 
information about abilities learned in one period be used later to attain more redistribution than 
is possible in a one-period world? When the government can commit to future policies and has 
the same discount rate as individuals, intertemporal nonstationarity of tax schedules can lead to 
Pareto improvements by relaxing lifetime self-selection constraints, analogous to randomization 
in a one-period world. More significant use of information is possible when the social discount 
rate is less than individuals’ rates. The taxes converge over time to a nondistortionary schedule. 

1. Introduction 

Governments make some, but only limited, use of age-dependent income 
tax schedules. In the United States, the elderly benefit from a larger standard 
deduction in the Federal income tax, and the subsidies provided through the 
Social Security system (which depend on individual earnings histories) can be 
viewed as age-dependent transfers. At first glance, this limited use seems 
anomalous. Surely by the time an individual reaches age 50, the government 
has accumulated an enormous amount of information on him. The govern- 
ment could design tax schedules in which an individual’s tax liability depends 
on his complete lifetime work history. This argument seems particularly 

*The authors thank David Sappington and two anonymous referees for valuable comments. 
Jonathan Hamilton thanks the Public Policy Research Center for financial support. Joseph 
Stiglitz thanks the Hoover Institution, the John M. Olin Foundation, and the National Science 
Foundation for financial support. 

0047-2727/91/$03.50 0 1991-Elsevier Science Publishers B.V. (North-Holland) 



16 D.L. Brito et al., Optimal income taxation 

forceful under the now-widely-accepted view that limited information about 
individual abilities provides the reason for distortionary taxation. Lacking 
such information, the government must offer everyone the same tax schedule. 
The set of feasible consumption-leisure bundles must then satisfy self- 
selection constraints that limit the government’s redistribution capabilities. 

Upon further reflection, this failure to use previous earnings to determine 
current taxes may not be so anomalous. Were the government to do so, 
individuals would recognize that their current income will affect future tax 
rates and would accordingly alter their current behavior. While the govern- 
ment might be able to use the information accumulated during an indivi- 
dual’s lifetime to reduce the distortion associated with progressive taxation in 
later years, doing so would increase the distortion in earlier years. 

Indeed, what appears more anomalous is that, in the absence of an explicit 
commitment, individuals act as if they assume that the government will not 
base future taxes on current income. But this is also less of a paradox than it 
first appears - individuals save, even though the government has not 

committed itself not to confiscate wealth. The government’s desire to 
maintain a reputation can lead it to act as if it can make binding 
commitments not to use information learned in one period to engage in tirst- 
best lump-sum taxation in later periods. We analyze here the intertemporal 
structure of income taxation for a model with two ability classes when the 
government can commit itself to lifetime tax schedules. The government faces 
a single lifetime self-selection constraint for each type of individual which is 
essentially the same as the one-period self-selection constraint. It is easy to 
show that optimal tax schedules lead individuals immediately to reveal their 
ability levels. Learning individuals’ abilities is of no direct value to the 
government since it has committed itself not to use that information. This 
contrasts with Roberts (1984) who examines intertemporal optimal income 
taxation with an infinite horizon when the government cannot commit itself 
even implicitly not to use past incomes to determine tax schedules. In 
response, all individuals choose to earn the same income to prevent being 
heavily taxed in the future. 

With preferences and productivity unchanging over time and with the 
usual assumption of strictly convex preferences, we might expect the 
mathematics simply to confirm the optimality of what we usually observe - 
tax schedules that do not vary with age. But this is not the case under all 
preference maps and social welfare functions. The possibility of nonstationary 
tax schedules should not have been unexpected. Even with concave utility 
functions, the self-selection constraints introduce a nonconvexity into the 
government’s optimization problem. Nonstationary tax schedules may arise 
in the optimum, just as the optimal solution in a one-period problem may 
entail random taxation [see, for example, Stiglitz (1982)]. By varying tax 
rates over time, the government can simulate the outcome that would have 
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resulted from random taxation. Age dependence is not really the issue, since 
we will see that the order in which the tax schedules are presented is of 
minimal importance. 

To focus on the use of information over time, we concentrate our attention 
on the case where the government and individuals discount the future at the 
same rate. The government is able to commit itself to future tax schedules for 
individuals contingent upon past behavior. If the optimal one-period solution 
does not have random tax schedules, the government can do more redistribu- 
tion in the multi-period problem than in the one-period problem. If the one- 
period solution entails randomization, a nonstationary dynamic solution can 
achieve similar benefits. A problem with random tax schedules is that 
horizontal equity may be violated - ex post, identical individuals receive 
different consumption bundles yielding different utilities. Intertemporal non- 
stationarity is an alternative method of implementing random taxes that does 
not require ex ante or ex post violations of horizontal equity. 

These results follow from noting that a multi-period optimal tax model 
and a one-period model with random taxation are essentially the same. The 
analogy between random taxation and nonstationary taxation is suggestive, 
but there are differences between them. The random tax model has no 
restrictions on the relative frequencies with which different schedules are 
offered. With an infinite horizon and slow discounting, it is possible to 
duplicate exactly the random solution. However, with a finite number of 
periods or a high rate of discounting, there will be restrictions on the 
possible frequencies with which different schedules are offered. 

When the government values the future more than individuals do, more 
systematic use of age-dependent tax schedules than just mimicking random- 
ization is possible. As compared with the solution with identical discount 
rates, the government offers higher utility early and lower utility later to one 
of the types, while it offers the reverse to the other. Individuals weight the 
present relatively more in their self-selection constraints than does the 
government in its objective function. The government takes advantage of this 
difference in preferences in setting its optimal policy and causes the economy 
to approach over time the first-best allocation with nondistortionary 
redistribution. 

To some readers, randomization may seem a mathematical curiosity of 
limited interest to policy design.’ However, some of the arguments against 
implementing randomization are less serious criticisms of nonstationary tax 
schedules. With the latter, as noted above, it is still possible not to violate 
horizontal equity ex post. Intertemporal changes in the tax schedule only 
require keeping track of individuals’ ability types (inferred from previous 

‘Examples of papers exploring the role of randomization in adverse selection and other 
problems include Weiss (1976), Stiglitz (1982), Fellingham, Kwon and Newman (1984), Maskin 
and Riley (1984), and Arnott and Stiglitz (1988). 
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income histories) which may be far simpler than implementing a randomiza- 
tion procedure that is perceived as fair and appropriate. Furthermore, the 
gains from using randomization may well be large; Brito et al. (1989) give an 
example in which these gains may be equivalent to as much as 12 percent of 
aggregate resources. Thus, one does not wish to dismiss lightly the use of 
nonstationary tax schedules. 

Section 2 presents the basic model and summarizes both simple character- 
ization results for efficient tax structures and necessary and sufficient 
conditions for randomization to be desirable. Section 3 presents our results 
for the model with equal discount rates. Section 4 considers the problem 
when the government has a different discount rate from individuals, and 
section 5 contains our conclusions. 

2. The intertemporal model 

Consider a society composed of two different classes of individuals, 
denoted A and B. The individuals within each class are identical, but the two 
classes differ either in tastes or abilities. The government is assumed initially 
not to know to which class any individual belongs but knows the numbers of 
individuals in each class, which we normalize to one. Let p be the discount 
factor for individuals in both classes. In each period, individuals consume a 
single good, C, and work to earn income, Y. Within any period, all members 
of each class have the same utility function over these bundles V’(C, Y), 
i=a, b, with aVi/X=Vf>O and 8Vi/8Y=V~<0.2 Utility declines with Y 
for a given C since the rise in Y implies a decrease in leisure. Individuals live 
for M periods and have a lifetime utility function Pi =cE I p’- ‘Vi, i= a, b. 
The maximum income that individuals in each class can earn per period is 
bounded from above by K’, so that Y’s K’, i= a, b. The marginal rate of 
substitution for individual i is denoted MRS’(C, Y) = - V~/V~ > 0, i = a, b. 

The following assumptions are made about V’(C, Y): 

Assumption 1. V’(C, Y), i=a, b, is twice continuously differentiable in C and 
Y. 

Assumption 2. V’(C, Y), i = a, b, is strictly concave in C and Y. 

Assumption 3. MRP(C, Y) < MRSb(C, Y); type A’s indifference curves are 
flatter than B’s 

Assumption 1 is made for convenience in exposition but can be relaxed 

*The utility functions defined over {C, Y} can be derived from the more fundamental utility 
functions defined over goods and leisure. Let L’ be hours worked and wi the wage rate of group 
i. Then L’= Y/w, and V’(C, Y) = U’(C, Y/w,), where U’ is i’s utility function over C and L. 
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without difficulty. Assumption 2 of concavity (instead of quasiconcavity) 

insures that lifetime discounted utility describes convex preferences. Assump- 
tion 3 is the single crossing assumption. Sadka (1976) has shown that 
common preferences over consumption and leisure, differences in earning 
abilities, and noninferiority of consumption are sufficient for single crossing. 
In Brito et al. (1990), optimality conditions analogous to those in Theorems 
14 below are obtained without assuming single crossing. Here we assume it 
for ease in exposition. 

Our major theme here is that nonstationary tax schedules may be used by 
the government to mimic the effects of randomization in the single period 
problem. Baron and Besanko (1984) and Laffont and Tirole (1988) report 
that, with commitment by the principal, nonstationary reward schedules are 
of no value. However, they use particular functional forms for which 
randomization is not desirable in one-shot settings. We consider general 
utility functions, including those for which randomization may be useful in 
one-period applications. 

Brito et al. (1989) present necessary and sufficient conditions for random- 
ization and characterize the optimal randomization in a single-period version 
of this model. Our results there include the following: 

(1) if consumers are sufficiently risk-averse, there exists a randomization 
scheme that preserves horizontal equity within types (defined as equal ex 
post utility, not equal consumption); 

(2) the optimal randomization scheme requires at most three distinct 
consumption bundles to be included in the lottery offered one type of 
consumer; and 

(3) if a local randomization is desirable with some probability vector over 
three bundles, then for any other probability triple there exist three bundles 
such that randomization over those bundles at the given probabilities is 
feasible and improves on the deterministic solution.3 

Individuals are assumed to face M separate budget constraints that require 
that consumption in each period not exceed after-tax income in that period. 
We assume this to focus purely on the role of information transfer across 
periods in affecting taxation without complicating the analysis with the 
possibility of wealth or interest taxation. Assuming M budget constraints 
also eliminates the need to consider individual saving decisions. In the first 
period, every individual faces the same tax function, T’(Y,), since the 
government has no basis upon which to distinguish individuals. Thereafter, 
the government can recall the incomes reported in previous periods by that 
individual and can condition the tax functions on previous periods’ income. 

‘A local randomization scheme is one where the value of social welfare is increased by 
arbitrarily small deviations from the deterministic solution. 
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Thus, the tax function in period t> 1 is written as T’( XI Y,, . . ., x- 1). The 
government cannot condition an individual’s current taxes on the current or 
past behavior of others.4 Taking the sequence of tax functions as given, 
each individual chooses lifetime consumption and income to solve the 
following maximization: 

M 

max C pfm ’ V( C(, Yi) 
cc,. YJ f = 1 

s.t. ci, 5 r; - 7-y Y';,, 

C;sYf-T’(YfIYf ,...., Yf_J, t=2 ,..., M. 

The solution gives lifetime consumption and income vectors as functions of 
the vector of tax functions, c”( T’, . . . , TM) and Yi( T’, . . . , TM). 

Given the choices by individuals in each class and subject to the budget 
constraint, the government chooses the set of tax functions to maximize 
social welfare (to be defined below). To analyse this, we carry out the 
standard transformation of this problem to the equivalent one of the 
government choosing lifetime allocations for each type which satisfy self- 
selection constraints and resource balance. Clearly, given the tax functions, 
the optimizing choices by individuals must satisfy the self-selection con- 
straints since each person chooses the best allocation available. Conversely, 
for any set of bundles satisfying the self-selection constraints, there exist a 
series of tax functions that allow only those bundles to be chosen. For 
example, tax functions that lead to after-tax budget constraints that are step 
functions can do this. Individuals will choose to be only at bundles where 
consumption has jumped UP.~ 

There is only one lifetime constraint for each class and no period-by- 
period self-selection constraints. In the first period, individuals decide 

4This contrasts with Harris (1987). If the government knows that half the population are type 
A and half type B, it can ‘force’ truthful revelation in a Nash equilibrium by imposing heavy 
penalties on all individuals if more than half claim to be of a particular type. We find these 
Nash equilibria unpersuasive. 

5When a self-selection constraint holds with equality, one of the groups is indifferent between 
the two bundles otTered. The solution requires that all individuals in the group choose the 
bundle aimed at that group. This can be achieved by assuming that the government can assign 
indifferent individuals to whichever group it desires. Given that the government does not know 
to which group a particular individual belongs, this is not a reasonable assumption. An 
alternative view is that the solution is really an a-equilibrium. Although it cannot itself be 
achieved, a bundle arbitrarily close to that solution can be found which satisfies resource 
balance and which has the self-selection constraint hold with strict inequality. If the self-selection 
constraints must hold with strict inequality, then there may exist no solution to the 
maximization problem. 
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whether or not to reveal their type when choosing their current income 
based on the entire lifetime consequences that follow. If individuals reveal 
their type in the first period, the government knows thereafter who they are 
and can prevent them from acting as if they belong to a different class. Any 
attempted deviation could be punished by imposition of a large penalty. 
After revealing through first-period choices, individuals in later periods can 
no longer choose any bundle other than the one the government desires 
them to consume. Hence, after the first period, the government’s choices are 
constrained only because of its initial commitment. It is well known that in 
the one-period problem, optimality requires separation, that is, the govern- 
ment chooses tax schedules such that individuals reveal their types. Because 
the government can commit itself, and separation is desirable in a one-period 
problem, separation will occur in every period. 

The government has a single intertemporal budget constraint: 
ct”i G’-‘[Tg+ Tfb] 20, where T\ is tax revenue collected from group i in 
period t and 6 is the government’s discount factor. This budget constraint is 
appropriate if the government can save or borrow using opportunities not 
available to individuals, such as a storage technology feasible only on a large 
scale or access to a world market closed to trade by individuals6 

The government maximizes the present discounted value of a weighted 
sum of lifetime utilities where the weights CY and (1 -a) are arbitrary and can 
vary to change the distribution between the groups. The weights on the two 
groups can be varied to trace out the entire utility possibility frontier. Even 
with different abilities and similar preferences, obtaining the complete frontier 
requires consideration of the case where the less able envy the bundle of the 
more able [see Stiglitz (1982)-J. The government’s discount factor, 6, need not 
equal that of individuals. When they are equal (6=p), the government’s 
maximization corresponds to finding the multi-period Pareto frontier as c( 
varies from 0 to 1. When they differ (6#p), the problem is no longer a 
Pareto problem since the government does not respect individuals’ intertem- 
poral preferences. While much literature analyzes why private and social 
discount rates could differ, these do not constitute our major reason for 
considering 6 #p. The major focus is on the case of equal discount rates. 
Allowing them to differ gives rise to a case which serves as a useful 
benchmark for comparison when discussing the uses of information in the 
optimal tax structure. The use of information across periods when 6 =p is 
much less systematic than when 6 #p. 

Formally, the government’s maximization problem is: 

6Alternatively, the government faces a new cohort each period and is constrained to use the 
same tax structure for all cohorts. Such a framework gives rises to a single within-period budget 
constraint when redistribution across cohorts is possible. The independent problems in each 
period are identical to the problem with a single intertemporal constraint. 
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(P) max f F’[uV~(C:, Y:)+(l--cc)Vb(Cib, Y,b)] 
t=1 

s.t. 2 pf~l[Vi(Cf, Y;)- V’(Cj, Yj)]>=O, i=a,b,j#i:& 
I=1 

05 Y:'SK', i=a,b,t=l,..., M, 

cfzo, i=a,b,t=l,..., M. 

The Lagrange multipliers on the self-selection constraints are A, and 2,. The 
Lagrange multiplier on the budget constraint is p. 

3. Optimal taxation when 6 = p 

Let Cf(cc) and Y:(R), i =a, b, and t = 1,. . . , M, be the solutions to (P) as 
functions of CI. Define Vi’(~)= V’(Cf(rx), Y:(U)). I”‘, i=a, b, are the optimal 
one-period utilities when no taxes are imposed. Properties of the optimal 
solution when 6 =p are given in the following four theorems. All proofs are 
deferred to the appendix. 

Theorem 1. If individuals of some type are at least as well off as with no 
taxation, then that type’s self-selection constraint is not binding. That is, 

then $J pf- ’ V’(C$a), Y:(a)) < t p’- l V”(a), 

f=l t=1 

i=a, b and j#i. 

See fig. 1 for an illustration. If the government had to raise positive 
revenue, Theorem 1 holds with the modification that the Vi0 are the 
one-period utilities when equal lump-sum taxes are imposed. 

Theorem 2. Only one type of individual can have a binding self-selection 
constraint. Formally, 



D.L. Brito et al., Optimal income taxation 23 

CbW 

Yb(a) Yb Yao Y”(a) 

Fig. 1. Since type b is better off than at the no-tax outcome, b’s self-selection constraint is not 
binding. 

if ; pf-lvi’(a)= F pf-lvi(C;(a), Y{(a)), 
?=l 1=1 

then E p’-lVj(a)> fiJ p'-lVj(Cf(a), Y:(a)), i=a, b and j#i. 
1=1 i=l 

It follows immediately from this that any additional resources could be 
given to a group whose bundle is viewed as inferior by the other group 
without violating the self-selection constraints. Thus, production efficiency 
must hold, implying ~L>O. 

Theorem 3. If the self-selection constraint for one group does not bind, then 
for the other group, the consumption-income bundle is stationary and its MRS 
there equals the marginal rate of transformation (which equals one). That is, if 
Ai=O, then C:‘(cr)=C’,(a), Yj(a)=Y’,(a) and MRSj(Ci(a), Yi(a))=l, i=a,b, j#i, 
t=l,..., M. 

Theorem 4. Assume one group’s self-selection constraint binds. In all periods, 
the other group’s MRS at its own bundle lies between the MRT and the MRS 
of the group whose constraint binds. That is, at each t = 1,. . . , M, if 1. >O, 
MRS”(C~(a), Y:(a)) < MRSb(CF(a), Y:(a)) < 1, while if A,, >O, 1 -C MRS’(CF(a), 
Y:(a)) < MRSb(C;(a), Y:(a)). 
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Thus, if distortions exist in the one-period solution, then they exist in all 
periods of the multi-period solution. Information learned in the first period is 
not used to move to the first-best allocation in later periods. If the 
government uses the information it learns in specifying tax functions after the 
first period, it is committed to making only limited use of this information. 

In our formal results above, we assume single crossing. Except for 
Theorem 4, this assumption plays no direct role in the proofs. In Theorem 4, 
without single crossing, it remains true that if /li>O, then the MRS of group j 
at j’s bundle lies at least weakly between the MRS of the other group and 
the MRT. What differs is that either both MRS could be greater or less than 
the MRT, or all three could be equal. Furthermore, which of these 
possibilities occurs can change between periods. 

From these results, it is not clear whether the government uses information 
gained in the first period to affect later period taxes. A simple repetition of 
the one-period nonrandom solution satisfies all the first-order conditions for 
(P). However, despite the apparent symmetry of the first-order conditions, 
multiple asymmetric solutions may arise in the form of nonstationarity of the 
optimal consumption-income vectors. Such nonstationary solutions arise 

from the same nonconvexity of the self-selection constraints that make 
random solutions in the one-period problem optimal. In fact, the following 
theorems show that there is an exact analogy between existence of a 
nondegenerate solution to the random tax problem and a nonstationary 
solution to (P). 

Let 

V’(c7)= t pf-lvi(Cf(cx), Y;(a))/ E pf-l, i=a, b, 

be the average utility achieved by each group over its lifetime. Let the 
normalized utility possibility frontier be the utility possibility frontier in 
average utilities. 

Theorem 5. If 6 =p and the solution to (P) is nonstationary, then in the 
one-period problem some random taxation would improve on the deterministic 
optimum. 

Theorem 6. If the solution to the one-period problem uses random taxation, if 
M = co, and tf 6 =p 2 5, then the solution to (P) is nonstationary. The 
normalized Pareto frontier in (P) is identical to the Pareto frontier in expected 
utilities in the one-period problem. 

The random solution uses at most three bundles for the type whose 
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constraint does not bind. Since the probabilities associated with these 
bundles are not restricted, any set of probabilities summing to one could be 
the optimal solution. In the intertemporal problem, similarly only three 
different bundles need be assigned at different periods. A high discount factor 
(Sz%) and an infinite number of periods ensure that these three bundles can 
be assigned with the same discount weights as the bundles in the one-period 
problem have probability weights. ’ Thus, the intertemporal solution can 
exactly duplicate the random solution. 

Even when exact duplication is not possible, nonstationarity may still be 
optimal. 

Theorem 7. If the optimal solution to the one-period problem uses local 
randomization, then even if 6 = p <$ or if M is finite, the solution to (P) is 
nonstationary. The normalized Pareto frontier may be interior to that in the 
one-period random solution. 

In Brito et al. (1989) it is shown that if there exists a local randomization 
solution which improves on the deterministic solution, then an improving 
randomization can be found for any probability triple. Thus, even when the 
optimal random solution cannot be duplicated, another random solution can 
be duplicated which improves on the stationary solution. The necessary and 
sufficient condition for local randomization is given in that paper. Consider 
the deterministic solution with 1’>0. At that solution, let 

8=[Vi(C’, Y’)Il-MRS’(Cj, Yj)I]/[Vf(C’, Yj)Il-MRS’(C’, Yj)l] 

and let H’(Cj, Yj) be the Hessian of i’s utility function at (Cj, Yj). Then some 
local randomization improves on the deterministic solution if and only if the 
matrix Hj(Cj, Yj)--BH’(Cj, Yj) is not negative semidefinite. In essence, this 
condition states that local randomization is desirable if the utility function of 
the group whose self-selection constraint binds is more concave than that of 
the other group. 

4. Optimal taxation when S # p 

When the government and individuals have different discount rates, 
systematic nonstationarity arises in the optimal solution. The first-order 
conditions in (P) are: 

‘Note that, if p=k $, there exist triples, n,, i= 1,2,3, which cannot be the sums of terms in 
the sequences (1 - p)p’- ‘, t = 1, . , 03. For example, if p = f, the first term of the sequence equals 
f and the first-period bundle must have a discount weight of at least f in the lifetime utility 
function. A probability triple, n, =U2=t13=& could not be duplicated in the intertemporal 
problem. 
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t=l,...,M, (la) 

t=l,...,M, (lb) 

t=l,...,M, (lc) 

[stm’(l -cl)+1,p’_’ ](av”/aY,“)-~,p’-‘(ava/aYtb)+~~‘-l=o, 

t=l,...,M. (14 

When 6 >p, it follows from these conditions that as t increases, the 
economy approaches the one-period first-best UPF for any values of & and 
Ab. Because of the distortions in early periods, the normalized UPF based on 
average utilities is interior to the first-best UPF. 

Theorem 8. Consider (P) when 6 >p and M = 00. Assume that the utility 
functions satisfy the conditions that lim,,,(ar/a/aC)/(avb/aC) and 
limy_Xb (aV’/3Y)/(aVb/8Y) are finite. Then, when A,=0 and &>O, 

lim,,, MRSb(CF, YF) = 1. Since MRSa(Cf, YF) = 1, for all t, as t grows, the 
optimal solution approaches the one-period first-best Pareto frontier. 

The following example shows that the assumptions of this theorem can be 
satisfied. With identical, additively separable utility functions 
( V’( C, Y) = II/(C) - y( Y/wi)) and w, > wb, (8Va/XZ)/(8Vb/X)=1 at all C. The 
maximum income earned by the more able exceeds that earned by the less 
able (Ka>Kb). Hence, even if ay/aL goes to infinity as L approaches its 
maximum value of K’lw,, since Kb/w,<Ka/wa, then ay(Kb/w,)/aY and 
limy.+Xb (a v/a Y)/(a vb/a Y) are finite. 

Different discount rates cause the government and individuals of type A to 
have different intertemporal preferences for income. The government places a 
higher value on the future than do individuals, so trade between them is 
possible. The government can offer type A individuals higher current utility 
and lower future utility while doing the reverse for type B (as compared with 
the solution when 6 =p), while maintaining the self-selection constraints. 
Rapid discounting by individuals makes the early periods more important in 
the self-selection constraints; slower discounting by the government makes it 
place greater value on the lower distortions in the future. To see this, note 
that from eqs. (la) and (lb), aV/aC;= -ava/aY:=~/[cr+~,(p/6)‘-‘]. It 
follows that the marginal utility of consumption rises over time indicating 
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that consumption declines. As t goes to infinity, craV/X: goes to p. For 
group B consumption, (1 -c~)(aV~/Xp) =~~(~,)(p/6)‘-‘(ava/aC,b). Since 
lim inf C,” >O, eventually aV”/X,” declines with CF rising. As t goes to 
infinity, (1 -a)(aVb/@‘) goes to ,u. Thus, in the limit, the solution is not only 
Pareto optimal, but it is first-best in the sense of being the same as the 
solution to the one-period problem without self-selection constraints. 

If 6 <p, the government values the early periods relatively more than do 
individuals. The optimal solution tends to have distortions on the less able’s 
bundle increasing over time. Consider the constant path along which both 
groups receive the same bundles as in the one-period deterministic optimum 
every period. Even with different discount rates, this is feasible in (P). If the 
government adjusts the period t bundles in the direction of the first best, the 
value of its objective function increases, but the self-selection constraint on 
the more able would be violated. However, by making B’s bundle in period 
t + 1 less attractive for A, the self-selection constraint could still be satisfied. 
Given the difference in discount rates, the value of the government’s objective 
function grows with this procedure. While it is thus straightforward to show 
that the distortions increase over time, an exact characterization of the 
optimum is difficult since several possibilities exist. 

Consider the identical separable utility functions in C and L above. 
Assume 2, >O. The left-hand side of (lc) can be written as 
[(6/p)‘-‘( 1 -a) - A,]$‘(C,b) -,u(d/p)‘- ‘. For sufficiently large t, both terms 
become negative and a corner solution results with Cb going to zero in finite 
time. For some ti(.), this may be optimal. However, if lim,,, q?(C) = - co, it 
cannot be an optimal solution. If CF =0 at any finite t, the value of the 
government’s objective function would be - co. Instead, A,, which is constant 
over time for fixed M, will be such that for all t 5 M, (d/p)‘- ‘( 1 -a) - 1, > 0. 
Clearly, 1, must then decline with M. For large M, 1, will be close to zero. 
In this case, in the early periods the solution will be approximately first best. 
Type A individuals get an undistorted bundle at each t with C; rising and Y; 
declining as t increases. B’s bundle starts at a point with almost no distortion 
and MRSb(CP, Y,“) diverges from 1. 

Our formulation assumed identical discount rates for the two types. If 
6>p,>p, or 6Zp,>p,, the solution for 6>p still applies, since with I,>O, 
only A’s discount factor appears in the first-order conditions. If p,>6, the 
solution would be similar to that with pa=pb>G. 

5. Conclusions 

Our results indicate that, when the government respects individual dis- 
count rates, only in a weak sense does the optimal tax system incorporate 
any information about individuals learned from their responses over time. 
First, if the government is able to randomize in each period, then no benefit 
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is gained by keeping track of what individuals have earned in past periods. A 
lottery can be offered in each period, independent of other periods, satisfying 
self-selection constraints and yielding the best possible outcome. Second, if 
the government cannot randomize directly, then it can duplicate randomiza- 
tion by intertemporal nonstationarity. Such nonstationarity requires that the 
government keep track of individuals’ past behavior since, after the first 
period, some individuals would like to choose different bundles than those 
assigned to them. Third, the information on past earning experience does not 
yield systematic increases in the value of the government’s objective function. 
The time pattern of tax schedules is not motivated by attempts to gather 
informat;on about abilities, but is designed to provide lifetime utilities 
consistent with the self-selection constraints. Only the first-period choice by 
individuals is relevant information; after that, individuals in each period are 
in effect assigned a particular bundle. 

By contrast, if the government discounts the future at a different rate from 
individuals, then there is a systematic change in the bundles given to 
individuals over their lifetimes. In the limit, the distortions may be elim- 
inated. This arises because the different intertemporal preferences of the 
government and individuals leaves room for ‘trade’ between them. 

In our formal results, we have only considered a single intertemporal 
government budget constraint. Another possibility is that the government 
cannot borrow or lend, just as individuals are constrained in our model. In 
this case, nonstationary tax policies may still be desirable, but the conditions 
are more restrictive. It remains true that nonstationarity is only desirable if 
randomization is desirable in the one-period problem. However, it may also 
be necessary to give the type whose bundle is not envied different bundles 
over time (in contrast to Theorem 3). If that type has constant (or nearly 
constant) marginal utility of consumption, its welfare is only slightly reduced 
by the time-varying consumption path. The nonstationarity for that group 
takes the place of storage or of trade with the rest of the world. The period- 
by-period budget constraints in general prevent the normalized Pareto 
frontier from coinciding with the one-period frontier with randomization. If 
the government cannot borrow but can save resources until later periods, 
there would be restrictions on the order in which different bundles could be 
assigned. In the limiting case of no discounting and a sufficiently long 
horizon, the temporal order in which the bundles are given could be changed 
to satisfy a no-borrowing constraint without affecting lifetime utility. 

Our results show that nonstationarity over time and randomization within 
each period can substitute for each other in the optimal intertemporal 
income tax. It is not clear which approach is preferable since each has some 
advantages. 

First, randomization and nonstationarity are not perfect substitutes. Even if 
the government has a single intertemporal budget constraint, nonstationarity 
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is guaranteed to do as well as randomization only with an infinite horizon 
and a sufficiently large discount factor. If the government has a separate 
budget constraint in each period, the optimal randomization cannot be 
completely duplicated by intertemporal variability, so that randomization 
along with nonstationarity would be needed to reach this Pareto frontier. 

Second, political and administrative difficulties could prevent implementa- 
tion of either method. On the one hand, the government may be reluctant to 
incorporate randomization explicitly in the tax code. This is especially true 
since optimal randomization requires individuals to declare their type and 
then receive at random a tax schedule before choosing their labor supplies. 
The optimal randomization generally cannot be implemented by random 
collection or enforcement after labor supply decisions. On the other hand, 
intertemporal nonstationarity requires keeping track of past incomes to 
determine individuals’ current tax payments. However, this is simplified since 
the government needs only to recall each individual’s type as revealed by 
past decisions. 

Third, to increase acceptance of the tax system by society, it is desirable 
that the system be fair and also be perceived as fair. A standard notion of 
fairness is horizontal equity, i.e. that individuals in the same circumstances be 
treated the same. Randomization satisfies horizontal equity ex ante but not 
ex post. Before the random selection, all individuals of the same type face the 
same lottery. After receiving a random draw of tax functions, individuals of 
the same type will be induced to choose bundles which need not yield the 
same utility. Intertemporal nonstationarity achieves horizontal equity both ex 
ante and ex post in each period. Individuals of the same type are induced to 
choose the same bundles as each other in every period even though the 
choice varies over time. 

Fourth, both procedures induce differences in the bundles chosen by 
individuals of a type either within a period in an expected sense under 
randomization or over time under nonstationarity. Since the utility functions 
are strictly concave, individuals would desire to reduce these differences. 
Under randomization, individuals might gain by purchasing insurance coun- 
teracting the randomness in the tax system. If such policies were forbidden, 
then similar effects could be achieved by trades with other individuals of the 
same type. For the same reason, under nonstationarity, individuals would 
desire to smooth consumption and leisure over time by saving or borrowing. 
Saving or insurance serves to counteract the weakening of self-selection 
constraints which motivated the asymmetry of bundles in the first place. The 
ability to save or buy insurance will be a factor in the decision to reveal 
one’s type truthfully. The choice between nonstationarity or randomness may 
depend upon whether it is easier to prevent saving or insurance. If saving 
and insurance are desirable for other reasons or cannot be prevented, then 
simple repetition of the solution to the nonrandom one-period problem may 

J.P.E.-B 



30 D.L. Brito et al., Optimal income taxation 

be the best feasible solution. However, the opposite problem arises if only 
symmetric solutions are allowed when individuals have nonconvex oppor- 
tunity sets. Individuals might randomize consumption bundles to convexify 
budget sets; to attain self-selection, more distortionary taxation would have 
to be imposed. Prohibiting gambling would, under these circumstances, 
increase welfare. 

To focus on the informational aspects of the dynamic structure, the model 
was intentionally kept simple. Preferences and production possibilities were 
nonstochastic and identical in every period. Thus, no motivation for 
nonstationary taxation other than relaxing self-selection constraints exists. 
Nonstationarity of the tax schedules is the only incentive to save or borrow. 
Several important features that could influence the design of optimal 
dynamic tax schedules were left out. A more complete model could 
incorporate life-cycle features. If wages first rose and then fell with age, 
nonstationary tax schedules could relax borrowing constraints on individuals. 
In addition, future income might be subject to exogenous uncertainty. In our 
framework, after learning an individual’s type in the first period, the 
government could pin an individual down to a particular bundle in any later 
period by punishing deviations. If income were random, these punishments 
would be significantly harder to implement. 

Appendix: Proofs of theorems 

Proof of Theorem I. Let 

M /M 

C’(a)= 1 r’C;(a)/ c 6’-’ 

and 

P’(a)= 2 s~-'Yf(a) I f rl, i=a, b. 
1=1 t=1 

Since V’(C’, Y’) is strictly concave, Vi(Ci(a), P’(a))2 vi(a), with strict inequa- 
lity if the bundles are not stationary. If 

Y:' (LX)) 
i 

tE1 p’-’ = P’(a), then V’(Cj(a), i;ri(cr)) 2 P’(a), 

with strict inequality if (C{(a)), Y{(a)) is nonstationary, also follows from strict 

concavity. Assume, without loss of generality, that p(a)> Vao, so that 
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P(~(u), P”(a))2 Vao and Va(Cb(tx), pb(rx))> Vao must hold. Since the indiffer- 
ence curve Vao is tangent to the 45” line (C= Y), P(U)> P(U) and 
Cb(cz)> pb(~). Thus, C”(N)-P(cx)+C~(C()- Yb(~)>O must hold. But, 

f p'-l{c:(a)-Y;(a)+c,b(a)-Y,b(a)} E p’--’ 
r=1 I t=1 

= p(a) - p(a) + cb(a) - y’qa), 

so the budget constraint is violated unless A’s self-selection constraint is 
satisfied with strict inequality. Q.E.D. 

Proof of Theorem 2. There exists x0 such that V’(cr,) = I/“, i= a, b. For any 
ccfcr,, either P(a) > Vi0 or Vb(a) > Vbo. Then from Theorem 1, one type 
cannot have a binding self-selection constraint. Q.E.D. 

Proof of Theorem 3. Since type i does not envy type j’s sequence of bundles, 
if MRS’(Cj(ol), Y{(U)) # 1, we can adjust j’s bundle and free up additional 
resources without harming j. Thus, MRSj(C{(cr), Y;(U)) = 1, t = 1,. . . , M. If 
the sequence of bundles assigned to j were nonstationary, then given that 
I/j is strictly concave, j would prefer a move toward a stationary bundle 
with the same present discounted utility. A small move in that direction 
would maintain budget balance and would not violate i’s self-selection 
constraint. Thus, assigning a nonstationary bundle could not have been 
optimal. Q.E.D. 

Proof of Theorem 4. Since 6 =p, these terms cancel from the first-order 
conditions in (1). Assume that 1, > 0. For any (CF, YF), the FOC are: 

(1 -rx)V;(c;, Y,b)-&V;(C;, Y,b)-p=o, 

(l-c()I/yb(C$, Yp)-&V;(C;, Y,b)+/L=O. 

Eliminating p and combining terms yields: 

(l-a)VF(Ci, Y:)[l-MRS(C,b, Y,b)]=&V~(C~, YF)[l-MRS”(CF, Y,b)]. 

Adding &V:C,“, Y,“)A4RSb(CF, YF) to both sides, substituting the first-order 
condition for CF, and combining terms yields: 

/~[l -MRSb(C;, Y;)] = A,V:(C;, Y,b)[MRSb(C;, Y;) -MRSa(C;, Y;)]. 
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Since 2, >O (by assumption) and p >O, the result follows im- 
mediately. Q.E.D. 

Proof of Theorem 5. A deterministic solution to the one-period problem can 
be duplicated as a stationary solution in the dynamic problem by assigning 
the solution in the one-period problem in every period of (P). A nonstation- 
ary solution can always be duplicated by a randomized solution in the one- 
period problem. Assign any bundle with a probability equal to the sum of 
the discount weights which that bundle received in the nonstationary 
solution. If a nonstationary solution dominates the optimal stationary one, 
then it dominates any feasible stationary solution. It then follows that the 
random analogue of the nonstationary solution must dominate the one- 
period problem which dominates the optimal deterministic solution. 
Q.E.D. 

Proof of Theorem 6. The proof requires the following lemma. 

Lemma 1. Consider an infinite sequence defined by (1 -x)x’- ‘, t = 1, . . ., co. 
Consider three numbers I7,, n2, Ill3 with IT,>0 and 17, + ll, + II3 = 1. If 
$1x< 1, then there exists a partition, Ii, of the positive integers indexing the 
terms of the sequence such that 

(l-4 c x t-l=fli, i=l,2,3. 
isl, 

Proof Construct the desired partition by the following procedure. Define 
521, Sz; and s2j as the sums of the terms in each partition using the first r 
terms of the sequence. For r = 1, one of 52: = 1 -x and the rest are zero. Let 
S,~n;+52;+n;=C:=,(l_x)xt-‘. By summing, it follows that 1 -S,= x’. If 
~2% then for all r, (l-x)x *-l~f~‘~l=~l-S,_l). That is, the rth term is 
less than one-third the sum of the remaining terms, including itself. Thus, the 
rth term can always be put into at least one of the partial sums without 
exceeding that ni. Then for all r, the partitions can be formed with 
ni-52;-1z0, i=l,2,3. As r goes to infinity, ~:=l(l-x)x’-l goes to one so 
that Sz; + 52; + Sz; goes to 1. It then follows that a: goes to 17, as r goes to 
infinity. Q.E.D. 

Proof of Theorem. From the lemma, if three or fewer distinct bundles arise 
in the optimal solution, a discount factor greater than or equal to 3 insures 
that any probabilities for these bundles are attainable. The optimal random 
solution to the one-period problem requires at most three distinct bundles. 
The maximization problem for the government is a linear programming 
problem in the probabilities, viewing the bundles as fixed. There are at most 
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three binding constraints: one of the self-selection constraints; the govern- 
ment budget constraint; and the constraint that the probabilities sum to one. 
There exists a solution with the number of probabilities not equal to zero no 
greater than the number of binding constraints. 

First, for any c(, the random one-period solution can be duplicated in (P). 
Let k(j) equal the number of bundles in the lottery offered to type j. For 
some j, k(j)= 1 with (Cj’, Yj’) received by j with certainty, while for i#j, 

k(j) 5 ?i can hold at an optimal solution. Hence, there exist (Cih, Yih) and xi,,, 
h = 1,2,3, in an optimal solution. Consider (P) and multiply the objective 
function, the self-selection constraints, and the budget constraint by the 
constant (l/c,“= I p’- ‘) = 1 - p. This leaves the solution unchanged. From 
Lemma 1, there is a partition of the integers such that xtElh( 1 -p)*-i =nih, 
h = 1,2,3. Then assign (Cih, Yih) to i in all periods t E I,, h = 1,2,3, and assign 
(Cji, Yj’) to j in all periods. By construction, this is feasible in (P) since it is 
feasible in the one-period problem. 

Second, this solution is optimal in (P). If it were not optimal, then there 
would exist a feasible lifetime bundle (C’, Pi), i = a, b, such that 

[ 
Ui f prmlVi(C’f, Pf)+aj fJ p’-‘vj(c’j, pi) (l_p) 

1=1 f=l 1 

>ui i C pf- ‘(1 -p)vi(cih, yih) +ujyj(cjl, yjl) 
h= 1 CEI,, 

=ui 2 7cihVi(Cih, Yih) +ujqc”, Y"), i=a, b, and j#i. 
h=l 

Since p < 1 and since Va(Ca, Ya) and Vb(Cb, Yb) have upper bounds, given the 
bounds on C” and Y”. there would exist a finite T such that 

[ 
ai f: p*-lV’(C’f, Pf)+uj $j p’-‘l/j(cJ{, pi) (1-p) 

1=1 1=1 1 

>Ui i TCihVi(Cih, Yih)+ajVj(Cjl, Yj'). (A.11 
h=l 

Since Ch3, 1 CrCIh pf- ’ < l/( 1 -p), the inequality (A.l) will still hold if the 
left-hand side is multiplied by l/[( 1 -p)cT= 1 p’-l]. Similarly, for T large 
enough, a self-selection constraint which held with inequality will still hold 
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with inequality, while one that held with equality will be violated by, at 
most, an arbitrarily small E. Similarly, the resource balance will be violated 
by, at most, an arbitrarily small E. If the self-selection constraint which is 
violated is that for group i, then there exists an q>O, such that substituting 
y{:‘= Yj+ q, for Y{, will have all constraints satisfied and still leave (A.l) 
satisfied. Then the lotteries ((Cf, Yf), xi,) and ((Cj, Pi), xjt) with ~it=njt= 

p*~r/~&i p’-’ are feasible in the one-period problem and yield a higher 
value than the optimum, which is a contradiction. 

This shows existence by construction of an optimal solution. Since the 
solution duplicates that of the one-period problem, the remainder of the 
theorem follows immediately. Q.E.D. 

Proof of Theorem 7. When M is finite or 6 <f, only a subset of the 
probability simplex xi_ 1 q,,= 1 can be achieved by intertemporal variation 
in the optimal bundles. If the optimal lotteries in the one-period problem 
involve probabilities in the attainable subset, then the optimal solution can 
be duplicated. If not, but a local randomization does improve the determinis- 
tic outcome, then, as shown in Brito et al. (1989) a local randomization with 
any probabilities improves on the deterministic solution. Thus, randomiza- 
tion with probabilities from the attainable part of the simplex will improve 
on the deterministic solution and these can be duplicated by nonstationary 
solutions in (P). For M sufficiently large but finite, a nonstationary solution 
can come sufficiently close to the nonrandom solution to improve on the 
best nonstationary solution. When some nonstationarity is desirable, but 
the optimal random solution cannot be duplicated, the outcome on the 
normalized Pareto frontier will be interior to that in the one-period 
problem. Q.E.D. 

Proof of Theorem 8. Given A,,= 0, eqs. (la) and (1 b) yield MRF’(C:, YF) = 1, 
for all t. Divide eq. (lc) by 6’-‘(3Vb/aC~) and (Id) by s’-‘(aVb/aY,b). 

(1 -cz) - 1&/s)‘- l[(ava/ac,b)/(avb/aC,b)] -/l/(avb/ac,“) =o, 

t=l,..., M, (A.2a) 

( 1 - c() - &,(p/d)‘- ’ [(i, v=/d Y;)/( i? vb/8 Y,b)] + p/(8 vb/d Y;) = 0, 

t=l,...,M. (A.2b) 

Since aV’/X is finite for C>O and limc_o(a~a/aC)/(dVb/aC) is finite, 

lim,,, sup(~/6)‘-~[(av~/aC~)/(a~‘/aC~)] =O, Hence, should lim,,, sup(aVb/ 
X)= co, then after some 2, the left-hand side of (A.2a) would be strictly 
positive, violating the first-order condition. Thus, no CF sequence goes to zero, 
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guaranteeing that lim,, m inf CF > 0. Similarly, from (A.2b), lim,, m sup YF < Kb. 
Therefore, 

lim,,, sup(p/6)‘-‘(aVb/aCfb)=lim,,, sup(p/6)‘-‘(Wb/8Yp)=0. 

Given this, divide (lc) and (Id) by 6’- ’ and solve for 

A4RSb(C,“, r;, = -(avb/aYp)/(a Vb/2C,b). 

(A.3) 

then lim,, m MRP( cp, r;, = 1. Q.E.D. 
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