352 research outputs found

    Measurements of pernitric acid at the South Pole during ISCAT 2000

    Get PDF
    The first measurements of pernitric acid at the South Pole were performed during the second Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT 2000). Observed HO2NO2 concentrations averaged 25 pptv. Simple steady-state calculations constrained by measurements show that the lifetime of pernitric acid was largely controlled by dry deposition, with thermal decomposition becoming increasingly important at warmer temperatures. We determined that the pernitric acid equilibrium constant is less uncertain than indicated in the literature. One consequence of pernitric acid deposition to the snow surface is that it is an important sink for both NOx and HOx. Another is that the photochemistry of HO2NO2 in the Antarctic snowpack may be a NOx source in addition to nitrate photolysis. This might be one of the important differences in snow photochemistry between the South Pole and warmer polar sites

    Conditional large Fock state preparation and field state reconstruction in Cavity QED

    Get PDF
    We propose a scheme for producing large Fock states in Cavity QED via the implementation of a highly selective atom-field interaction. It is based on Raman excitation of a three-level atom by a classical field and a quantized field mode. Selectivity appears when one tunes to resonance a specific transition inside a chosen atom-field subspace, while other transitions remain dispersive, as a consequence of the field dependent electronic energy shifts. We show that this scheme can be also employed for reconstructing, in a new and efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio

    Spatiotemporally Localized Multidimensional Solitons in Self-Induced Transparency Media

    Get PDF
    "Light bullets" are multi-dimensional solitons which are localized in both space and time. We show that such solitons exist in two- and three-dimensional self-induced-transparency media and that they are fully stable. Our approximate analytical calculation, backed and verified by direct numerical simulations, yields the multi-dimensional generalization of the one-dimensional Sine-Gordon soliton.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    Full text link
    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled DC electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on DC electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure

    Observation of polarization quantum noise of laser radiation in Rb vapor cell

    Full text link
    We present experimental study of polarization quantum noise of laser radiation passed through optically think vapor of Rb87. We observe a step-like noise spectrum. We discuss various factor which may result in such noise spectrum and prevent observation of squeezing of quantum fluctuations predicted in Matsko et al. PRA 63, 043814 (2001).Comment: 4 pages, 5 figures. Translated from Russian by I. Novikov

    Alternative approach to electromagnetic field quantization in nonlinear and inhomogeneous media

    Full text link
    A simple approach is proposed for the quantization of the electromagnetic field in nonlinear and inhomogeneous media. Given the dielectric function and nonlinear susceptibilities, the Hamiltonian of the electromagnetic field is determined completely by this quantization method. From Heisenberg's equations we derive Maxwell's equations for the field operators. When the nonlinearity goes to zero, this quantization method returns to the generalized canonical quantization procedure for linear inhomogeneous media [Phys. Rev. A, 43, 467, 1991]. The explicit Hamiltonians for the second-order and third-order nonlinear quasi-steady-state processes are obtained based on this quantization procedure.Comment: Corrections in references and introductio

    Frequency selection by soliton excitation in nondegenerate intracavity downconversion

    Get PDF
    We show that soliton excitation in intracavity downconversion naturally selects a strictly defined frequency difference between the signal and idler fields. In particular, this phenomenon implies that if the signal has smaller losses than the idler then its frequency is pulled away from the cavity resonance and the idler frequency is pulled towards the resonance and {\em vice versa}. The frequency selection is shown to be closely linked with the relative energy balance between the idler and signal fields.Comment: 5 pages, 3 figures. To appear in Phys Rev Let

    Two-Photon Interferometry for High-Resolution Imaging

    Get PDF
    We discuss advantages of using non-classical states of light for two aspects of optical imaging: creating of miniature images on photosensitive substrates, which constitutes the foundation for optical lithography, and imaging of micro objects. In both cases, the classical resolution limit given by the Rayleigh criterion is approximately a half of the optical wavelength. It has been shown, however, that by using multi-photon quantum states of the light field, and multi-photon sensitive material or detector, this limit can be surpassed. We give a rigorous quantum mechanical treatment of this problem, address some particularly widespread misconceptions and discuss the requirements for turning the research on quantum imaging into a practical technology.Comment: Presented at PQE 2001. To appear in Special Issue of Journal of Modern Optic

    Broadband teleportation

    Get PDF
    Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-variable teleportation protocol by Braunstein and Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states and apply them to the teleportation of broadband fields. We first consider as a set of input fields (from which an independent state preparer draws the inputs to be teleported) arbitrary pure Gaussian states with unknown coherent amplitude (squeezed or coherent states). This set of input states, further restricted to an alphabet of coherent states, was used in the experiment by Furusawa {\it et al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just twice the (entanglement) source's squeezing spectrum for its ``quiet quadrature.'' The teleportation of one half of an entangled state (two-mode squeezed vacuum state), i.e., ``entanglement swapping,'' and its verification are optimized under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable entanglement swapping based on the single-mode scheme by van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review A (August 2000); major changes, in parts rewritte
    corecore