352 research outputs found
Measurements of pernitric acid at the South Pole during ISCAT 2000
The first measurements of pernitric acid at the South Pole were performed during the second Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT 2000). Observed HO2NO2 concentrations averaged 25 pptv. Simple steady-state calculations constrained by measurements show that the lifetime of pernitric acid was largely controlled by dry deposition, with thermal decomposition becoming increasingly important at warmer temperatures. We determined that the pernitric acid equilibrium constant is less uncertain than indicated in the literature. One consequence of pernitric acid deposition to the snow surface is that it is an important sink for both NOx and HOx. Another is that the photochemistry of HO2NO2 in the Antarctic snowpack may be a NOx source in addition to nitrate photolysis. This might be one of the important differences in snow photochemistry between the South Pole and warmer polar sites
Conditional large Fock state preparation and field state reconstruction in Cavity QED
We propose a scheme for producing large Fock states in Cavity QED via the
implementation of a highly selective atom-field interaction. It is based on
Raman excitation of a three-level atom by a classical field and a quantized
field mode. Selectivity appears when one tunes to resonance a specific
transition inside a chosen atom-field subspace, while other transitions remain
dispersive, as a consequence of the field dependent electronic energy shifts.
We show that this scheme can be also employed for reconstructing, in a new and
efficient way, the Wigner function of the cavity field state.Comment: 4 Revtex pages with 3 postscript figures. Submitted for publicatio
Spatiotemporally Localized Multidimensional Solitons in Self-Induced Transparency Media
"Light bullets" are multi-dimensional solitons which are localized in both
space and time. We show that such solitons exist in two- and three-dimensional
self-induced-transparency media and that they are fully stable. Our approximate
analytical calculation, backed and verified by direct numerical simulations,
yields the multi-dimensional generalization of the one-dimensional Sine-Gordon
soliton.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation
Recent advances in quantum information processing with trapped ions have
demonstrated the need for new ion trap architectures capable of holding and
manipulating chains of many (>10) ions. Here we present the design and detailed
characterization of a new linear trap, microfabricated with scalable
complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited
to this challenge. Forty-four individually controlled DC electrodes provide the
many degrees of freedom required to construct anharmonic potential wells,
shuttle ions, merge and split ion chains, precisely tune secular mode
frequencies, and adjust the orientation of trap axes. Microfabricated
capacitors on DC electrodes suppress radio-frequency pickup and excess
micromotion, while a top-level ground layer simplifies modeling of electric
fields and protects trap structures underneath. A localized aperture in the
substrate provides access to the trapping region from an oven below, permitting
deterministic loading of particular isotopic/elemental sequences via
species-selective photoionization. The shapes of the aperture and
radio-frequency electrodes are optimized to minimize perturbation of the
trapping pseudopotential. Laboratory experiments verify simulated potentials
and characterize trapping lifetimes, stray electric fields, and ion heating
rates, while measurement and cancellation of spatially-varying stray electric
fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
Recommended from our members
An overview of ISCAT 2000
The Investigation of Sulfur Chemistry in the Antarctic Troposphere (ISCAT) took place over the timer period of 15 November to 31 December in the year 2000. The study location was the Amundsen Scott Station in Antarctica. ISCAT 2000 defines the second phase of a program designed to explore tropospheric chemistry in Antarctica. As in 1998, the 2000 ISCAT study revealed a strong oxidizing environment at South Pole (SP). During the 2000 investigation, however, the suite of measurements was greatly expanded. These new measurements established the recycling of reactive nitrogen as a critical component of this unique environment. This paper first presents the historical background leading up to the ISCAT 2000 observations; then it focuses on providing a summary of the year 2000 results and contrasts these with those recorded during 1998. Important developments made during the 2000 study included the recording of SP data for several species being emitted from the snowpack. These included NO, H 2O2 and CH2O. In this context, eddy-diffusion flux measurements provided the first quantitative estimates of the SP NO and NOx snow-to-atmosphere fluxes. This study also revealed that HNO 3 and HO2NO2 were major sink species for HOx and NOx radicals. And, it identified the critical factors responsible for SP NO levels exceeding those at other polar sites by nearly an order of magnitude. Finally, it reports on the levels of gas phase sulfur species and provides evidence indicating that the absence of DMS at SP is most likely due to its greatly shorten chemical lifetime in the near vicinity of the plateau. It is proposed that this is due to the influence of NO on the distribution of OH in the lower free troposphere over a region that extends well beyond the plateau itself. Details related to each of the above findings plus others can be found in the 11 accompanying Special Issue papers. © 2004 Elsevier Ltd. All rights reserved
Observation of polarization quantum noise of laser radiation in Rb vapor cell
We present experimental study of polarization quantum noise of laser
radiation passed through optically think vapor of Rb87. We observe a step-like
noise spectrum. We discuss various factor which may result in such noise
spectrum and prevent observation of squeezing of quantum fluctuations predicted
in Matsko et al. PRA 63, 043814 (2001).Comment: 4 pages, 5 figures. Translated from Russian by I. Novikov
Alternative approach to electromagnetic field quantization in nonlinear and inhomogeneous media
A simple approach is proposed for the quantization of the electromagnetic
field in nonlinear and inhomogeneous media. Given the dielectric function and
nonlinear susceptibilities, the Hamiltonian of the electromagnetic field is
determined completely by this quantization method. From Heisenberg's equations
we derive Maxwell's equations for the field operators. When the nonlinearity
goes to zero, this quantization method returns to the generalized canonical
quantization procedure for linear inhomogeneous media [Phys. Rev. A, 43, 467,
1991]. The explicit Hamiltonians for the second-order and third-order nonlinear
quasi-steady-state processes are obtained based on this quantization procedure.Comment: Corrections in references and introductio
Frequency selection by soliton excitation in nondegenerate intracavity downconversion
We show that soliton excitation in intracavity downconversion naturally
selects a strictly defined frequency difference between the signal and idler
fields. In particular, this phenomenon implies that if the signal has smaller
losses than the idler then its frequency is pulled away from the cavity
resonance and the idler frequency is pulled towards the resonance and {\em vice
versa}. The frequency selection is shown to be closely linked with the relative
energy balance between the idler and signal fields.Comment: 5 pages, 3 figures. To appear in Phys Rev Let
Two-Photon Interferometry for High-Resolution Imaging
We discuss advantages of using non-classical states of light for two aspects
of optical imaging: creating of miniature images on photosensitive substrates,
which constitutes the foundation for optical lithography, and imaging of micro
objects. In both cases, the classical resolution limit given by the Rayleigh
criterion is approximately a half of the optical wavelength. It has been shown,
however, that by using multi-photon quantum states of the light field, and
multi-photon sensitive material or detector, this limit can be surpassed. We
give a rigorous quantum mechanical treatment of this problem, address some
particularly widespread misconceptions and discuss the requirements for turning
the research on quantum imaging into a practical technology.Comment: Presented at PQE 2001. To appear in Special Issue of Journal of
Modern Optic
Broadband teleportation
Quantum teleportation of an unknown broadband electromagnetic field is
investigated. The continuous-variable teleportation protocol by Braunstein and
Kimble [Phys. Rev. Lett. {\bf 80}, 869 (1998)] for teleporting the quantum
state of a single mode of the electromagnetic field is generalized for the case
of a multimode field with finite bandwith. We discuss criteria for
continuous-variable teleportation with various sets of input states and apply
them to the teleportation of broadband fields. We first consider as a set of
input fields (from which an independent state preparer draws the inputs to be
teleported) arbitrary pure Gaussian states with unknown coherent amplitude
(squeezed or coherent states). This set of input states, further restricted to
an alphabet of coherent states, was used in the experiment by Furusawa {\it et
al.} [Science {\bf 282}, 706 (1998)]. It requires unit-gain teleportation for
optimizing the teleportation fidelity. In our broadband scheme, the excess
noise added through unit-gain teleportation due to the finite degree of the
squeezed-state entanglement is just twice the (entanglement) source's squeezing
spectrum for its ``quiet quadrature.'' The teleportation of one half of an
entangled state (two-mode squeezed vacuum state), i.e., ``entanglement
swapping,'' and its verification are optimized under a certain nonunit gain
condition. We will also give a broadband description of this
continuous-variable entanglement swapping based on the single-mode scheme by
van Loock and Braunstein [Phys. Rev. A {\bf 61}, 10302 (2000)]Comment: 27 pages, 7 figures, revised version for publication, Physical Review
A (August 2000); major changes, in parts rewritte
- …
