29 research outputs found
Ammoniakemissie uit dierlijke mest en kunstmest, 1990-2008 : berekeningen met het Nationaal emissiemodel voor Ammoniak (NEMA)
De landbouw is de belangrijkste bon van ammoniak (NH3) in Nederland. In 2009 heeft de CDM-werkgroep ‘Nationaal Emissiemodel voor Ammoniak’ (NEMA) een nieuwe methodiek ontwikkeld om de ammoniakemissie uit de landbouw te berekenen. De nieuwe rekenmethodiek gaat bij de berekening van emissie uit stallen en mestopslagen tijdens beweiding en bij mesttoediening uit van de hoeveelheid totaal ammoniakaal stikstof (TAN) in de mest. In 2010 heeft de Emissieregistratie (ER) besloten om deze methodiek te gaan gebruiken voor de jaarlijkse berekening van ammoniakemissie uit de landbouw. De tijdreeks is vanaf 1990 met de nieuwe methodiek herberekend. Bij de herberekening zijn ook waar mogelijk nieuwe inzichten verwerkt in de uitgangspunten. De resultaten van de nieuwe methodiek wijken vooral voor begin jaren negentig af van de oorspronkelijke resultaten in de ER-database. De NH3-emissie uit dierlijke mest in 1990 is met de nieuwe methodiek berekend op 319 miljoen kg. In de oorspronkelijke uitkomsten bedroeg de NH3-emissie uit dierlijke mest 224 miljoen kg. De belangrijkste oorzaken voor dit verschil zijn nieuwe emissiefactoren voor bovengronds toegediende mest op grasland en bouwland en het verschil in minerale stikstoffractie in de mest. De NH3-emissie uit dierlijke mest in 2008 is met de nieuwe methodiek vastgesteld op 99 miljoen kg tegen 108 miljoen volgens de oorspronkelijke reeks. Hoewel de verschillen tussen de resultaten van de nieuwe methodiek en de oorspronkelijke resultaten in recente jaren klein zijn, kunnen er wel duidelijke verschillen voorkomen tussen de afzonderlijke emissiebronnen
Emissies naar lucht uit de landbouw in 2016 : Berekeningen met het model NEMA
Agricultural activities are in the Netherlands a major source of ammonia (NH3), nitrogen oxide (NO), nitrous oxide (N2O), methane (CH4) and particulate matter (PM10 and PM2.5). The emissions in 2016 were calculated using the National Emission Model for Agriculture (NEMA). Some figures in the time series 1990-2015 were revised. The method calculates the NH3 emission from livestock manure based on the total ammonia nitrogen (TAN) content in manure. In 2016 NH3 emissions from livestock manure, fertilizer and other sources in agriculture, from hobby farms, private parties and manure disposal in nature areas amounted to 116.8 million kg NH3, 1.3 million kg more than in 2015. Nitrogen excretion increased due to expansion of the dairy herd, but because of a larger share of low emission housing and more manure exports outside agriculture, the increase in NH3 emission remained limited. N2O emissions in 2016 were 21.1 million kg at virtually the same level as in 2015(21.2). NO emissions in 2016 totaled 22.8 million kg compared to 22.6 million kg in 2015. CH4 emissions increased from 496 to512 million kg due to the expansion of the dairy herd. Emissions of particulate matter PM10 and PM2.5, 6.5 and 0.6 million kg respectively, did not change compared to 2015. NH3 emissions from livestock manure in the Netherlands dropped by almost two thirds since 1990, mainly as a result of lower nitrogen excretion rates by livestock and low emission manure application. Emissions of N2O and NO also decreased over the same period, but less strongly (38% and 31% respectively), due to higher emissions from manure injection into the soil and the shift from poultry housing systems with liquid manure towards solid manure systems. CH4 emissions reduced by 13% between 1990 and 2016 caused by a decrease in livestock numbers and increased feed efficiency of dairy cattle
Emissies naar lucht uit de landbouw in 2014 : berekeningen met het model NEMA
Landbouwkundige activiteiten zijn in Nederland een belangrijke bron van ammoniak (NH3), stikstofoxide (NO), lachgas (N2O),methaan (CH4) en fijnstof (PM10 en PM2,5). De emissies in 2014 zijn berekend met het National Emission Model for Agriculture(NEMA). Tegelijk zijn enkele cijfers in de reeks 1990-2013 aangepast op basis van nieuwe inzichten. De rekenmethodiek gaatbij de berekening van de ammoniakemissie uit dierlijke mest uit van de hoeveelheid totaal ammoniakaal stikstof (TAN) in demest. De ammoniakemissie uit dierlijke mest, kunstmest en overige bronnen in 2014 bedroeg 121 miljoen kg NH3, bijna4 miljoen kg meer dan in 2013. De stijging komt voornamelijk door uitbreiding van de melkveestapel en een hogerstikstofgehalte van het ruwvoer. De N2O-emissie nam toe van 19,1 miljoen kg in 2013 naar 19,4 miljoen kg in 2014. De NOemissienam toe van 16,9 naar 17,2 miljoen kg. De methaanemissie nam iets toe van 499 tot 503 miljoen kg. De emissie vanfijnstof nam licht toe van 6,3 miljoen kg PM10 tot 6,4 miljoen kg, door een toename van het aantal stuks pluimvee. De emissievan PM2,5 bedroeg in beide jaren 0,6 miljoen kg. Sinds 1990 is de ammoniakemissie uit dierlijke mest en kunstmest mettweederde gedaald, vooral door een lagere stikstofuitscheiding door landbouwhuisdieren en emissiearme mesttoediening.Emissies van lachgas en stikstofoxide daalden in dezelfde periode eveneens, maar minder sterk (ca. 40%) omdat doorondergronds toedienen van mest de emissies hoger zijn geworden en door de omschakeling van stalsystemen met dunne naarvaste mest bij pluimvee. Tussen 1990 en 2014 daalde de emissie van methaan met 16% door een afname in de dieraantallenen een hogere voeropname en productiviteit van melkvee---Agricultural activities are in the Netherlands a major source of ammonia (NH3), nitrogen oxide (NO), nitrous oxide (N2O),methane (CH4) and particulate matter (PM10 and PM2.5). The emissions in 2014 were calculated using the National EmissionModel for Agriculture (NEMA). At the same time some figures in the time series 1990-2013 were revised. The method calculatesthe ammonia emission from livestock manure on the basis of the total ammonia nitrogen (TAN) content in manure. Ammoniaemissions from livestock manure, fertilizers and other sources in 2014 were 121 million kg, which was almost 4 million kghigher than in 2013, mainly due to expansion of the dairy herd and a higher N-content of roughage. N2O emissions increasedfrom 19.1 million kg in 2013 to 19.4 million kg in 2014. NO emission increased slightly from 16.9 to 17.2 million kg. Methaneemissions increased from 499 to 503 million kg. Emissions of particulate matter increased slightly from 6.3 to 6.4 million kgPM10 as a result of higher poultry numbers. Emission of PM2.5 in both years was 0.6 million kg. Ammonia emissions fromlivestock manure in the Netherlands dropped by almost two thirds since 1990, mainly as a result of lower nitrogen excretionrates by livestock and low-emission manure application. Nitrous oxide and nitrogen oxide also fell over the same period, butless steeply (by about 40%), due to higher emissions from manure injection into the soil and to the shift from poultry housingsystems based on liquid manure to solid manure systems. Methane emissions fell by 16% between 1990 and 2014 caused by adrop in livestock numbers and increased feed uptake and productivity of dairy cattl
Methodology for estimating emissions from agriculture in the Netherlands : Calculations of CH4, NH3, N2O, NOx, NMVOC, PM10, PM2.5 and CO2 with the National Emission Model for Agriculture (NEMA), Update 2019
The National Emission Model for Agriculture (NEMA) is used to calculate emissions to air from agricultural activities in the Netherlands on a national scale. Emissions of ammonia (NH3) and other N compounds (NOx and N2O) are calculated for animal housing, manure storage, manure application and grazing using a flow model for total ammoniacal nitrogen (TAN). Emissions from the application of inorganic N fertilizer, compost and sewage sludge, cultivation of organic soils, crop residues, and ripening of crops are calculated as well. The NEMA is also used to estimate emissions of methane (CH4) from enteric fermentation and manure management, nonmethane volatile organic compounds (NMVOC) and particulate matter (PM) from manure management and agricultural soils, as well as for carbon dioxide (CO2) from liming. Emissions are calculated in accordance with the criteria of international guidelines and reported in an annual Informative Inventory Report (IIR; for air pollutants) and National Inventory Report (NIR; for greenhouse gases). This methodology report provides an outline of and describes the background to the calculation of emissions according to the NEMA
Changing land use intensity in Europe – Recent processes in selected case studies
In recent decades the intensification of agricultural production in many European countries has been one of the key components of land-use change. The impact of agricultural intensification varies according to national and local contexts and a greater understanding of the drivers of intensification will help to mitigate against its negative impacts and harness potential benefits. This paper analyses changes in land use intensity in six case studies in Europe. A total of 437 landowners were interviewed and their responses were analysed in relation to changes in land use intensity and agricultural production between 2001 and 2011. In the case studies in Western and Eastern Europe we observed stabilisation during the last decade, and no clear tendency of increase or decrease of land use intensity. The use of fertilizers and pesticides seems to have decreased in our cases in Western Europe, which is contrary to trends in Eastern Europe. Agricultural production remained stable in almost all cases, except for an increase in Austria and Romania which may indicate that the farming efficiency has increased. A statistical analysis showed a division between study areas in Romania and Austria (increasing land use intensity) versus those in the Netherlands, Denmark and Greece (decreasing). In the Mediterranean cases we observe a process where agriculture is becoming increasingly marginalised, at the same time as changes in function with regard to urbanisation and recreational land uses have taken place. Logistic regression highlighted the importance of farm size and farmer type in understanding changes in land use intensity. The dominant pattern of stabilisation which has occurred over the past 10 years may also partly be a result of effective EU and national environmental and agricultural policies, which are increasingly concerned with improving environmental conditions in rural areas
Clinical Characteristics and Management of Neovaginal Fistulas After Vaginoplasty in Transgender Women
OBJECTIVE: To describe our experience and results obtained in the management of neovaginal fistulas after vaginoplasty as gender reassignment surgery in transgender women. METHODS: A retrospective study was performed of 1,082 transgender women who underwent 1,037 primary and 80 revision vaginoplasty procedures between 1990 and 2015. Thirty-five women underwent both primary and later revision vaginoplasty at our institution. Patient, clinical, surgical, and outcome characteristics were reviewed. RESULTS: We treated 25 (2.3%) patients for 13 rectoneovaginal, 11 urethroneovaginal, and one pouch-neovaginal fistulas. Patients undergoing revision vaginoplasty were at higher risk of rectoneovaginal fistula development (0.8% compared with 6.3%, P<.01, odds ratio 8.6, 95% confidence interval 2.7-26.9). Of 23 intraoperatively identified and oversewn rectal perforations, four (17.4%) patients developed a rectoneovaginal fistula. In four patients, fecal diversion was achieved through temporary colostomy or ileostomy with direct (n=1) or delayed (n=3) fistula closure. In six patients, urethroneovaginal fistula arose after a complication such as meatal stenosis. Two patients underwent temporary suprapubic cystostomy for urinary diversion. In most patients, fistulectomy and primary closure or a local advancement flap was sufficient to treat the fistula. CONCLUSION: Neovaginal fistulas are uncommon after vaginoplasty. Symptoms of neovaginal fistulas are comparable with those of vaginal fistulas. In most patients, the diagnosis can be made based on symptoms and physical examination alone. It seems that a complicated course (eg, intraoperative rectal perforation or meatal stenosis) predisposes for fistula formation. Surgical repair of neovaginal fistulas is associated with few intraoperative and postoperative complications and does not seem to impair neovaginal function
Ammonia emissions from animal manure and inorganic fertilisers in 2009 : calculated with the Dutch National Emissions Model for Ammonia (NEMA)
De landbouw is de belangrijkste bron van ammoniak (NH3) in Nederland. De ammoniakemissie in 2009 is berekend met het Nationaal Emissiemodel voor Ammoniak (NEMA). Deze rekenmethodiek gaat bij de berekening van emissie uit stallen en mestopslagen tijdens beweiding en bij mesttoediening uit van de hoeveelheid totaal ammoniakaal stikstof (TAN) in de mest. Met het NEMA-model is de ammoniakemissie berekend voor de periode 1990-2009. De ammoniakemissie in 2009 is vrijwel gelijk aan de emissie in 2008. Sinds 1990 is de ammoniakemissie uit de landbouw met tweederde gedaald. Deze afname is voor een groot deel het gevolg van de verminderde stikstofexcretie door landbouwhuisdieren, waardoor de emissies uit stallen, mestopslagen, beweiding en mestaanwending zijn verminderd. De emissie door aanwending van dierlijke mest is met bijna 80% verminderd in 2009 ten opzichte van 1990