120 research outputs found

    Joint ESM-EVBO meetings:past, present, and future

    Get PDF

    Atherosclerosis development:lipoproteins and beyond

    Get PDF

    Fibroblasts in atherosclerosis:heterogeneous and plastic participants

    Get PDF
    Purpose of review Fibroblasts are very heterogeneous and plastic cells in the vasculature. A growing interest in fibroblasts in healthy and atherosclerotic vasculature is observed, next to macrophages, endothelial cells, and smooth muscle cells (SMCs). In this review, we discuss fibroblast presence, heterogeneity, origin, and plasticity in health and atherosclerosis based on latest literature. Recent findings With help of single cell sequencing (SCS) techniques, we have gained more insight into presence and functions of fibroblasts in atherosclerosis. Next to SMCs, fibroblasts are extracellular matrix-producing cells abundant in the vasculature and involved in atherogenesis. Fibroblasts encompass a heterogeneous population and SCS data reveal several fibroblast clusters in healthy and atherosclerotic tissue with varying gene expression and function. Moreover, recent findings indicate interesting similarities between adventitial stem and/or progenitor cells and fibroblasts. Also, communication with inflammatory cells opens up a new therapeutic avenue. Because of their highly plastic and heterogeneous nature, modulating fibroblast cell function and communication in the atherosclerotic vessel might be useful in battling atherosclerosis from within the plaque

    Targeting Non-coding RNA in Vascular Biology and Disease

    Get PDF
    Only recently have we begun to appreciate the importance and complexity of the non-coding genome, owing in some part to truly significant advances in genomic technology such as RNA sequencing and genome-wide profiling studies. Previously thought to be non-functional transcriptional “noise,” non-coding RNAs (ncRNAs) are now known to play important roles in many diverse biological pathways, not least in vascular disease. While microRNAs (miRNA) are known to regulate protein-coding gene expression principally through mRNA degradation, long non-coding RNAs (lncRNAs) can activate and repress genes by a variety of mechanisms at both transcriptional and translational levels. These versatile molecules, with complex secondary structures, may interact with chromatin, proteins, and other RNA to form complexes with an array of functional consequences. A body of emerging evidence indicates that both classes of ncRNAs regulate multiple physiological and pathological processes in vascular physiology and disease. While dozens of miRNAs are now implicated and described in relative mechanistic depth, relatively fewer lncRNAs are well described. However, notable examples include ANRIL, SMILR, and SENCR in vascular smooth muscle cells; MALAT1 and GATA-6S in endothelial cells; and mitochondrial lncRNA LIPCAR as a powerful biomarker. Due to such ubiquitous involvement in pathology and well-known biogenesis and functional genetics, novel miRNA-based therapies and delivery methods are now in development, including some early stage clinical trials. Although lncRNAs may hold similar potential, much more needs to be understood about their relatively complex molecular behaviours before realistic translation into novel therapies. Here, we review the current understanding of the mechanism and function of ncRNA, focusing on miRNAs and lncRNAs in vascular disease and atherosclerosis. We discuss existing therapies and current delivery methods, emphasising the importance of miRNAs and lncRNAs as effectors and biomarkers in vascular pathology

    Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice

    Get PDF
    Objective: Angiopoietin-2 (Ang-2) blocking agents are currently undergoing clinical trials for use in cancer treatment. Ang-2 has also been associated with rupture-prone atherosclerotic plaques in humans, suggesting a role for Ang-2 in plaque stability. Despite the availability of Ang-2 blocking agents, their clinical use is still lacking. Our aim was to establish if Ang-2 has a role in atheroma development and in the transition of subclinical to clinically relevant atherosclerosis. We investigated the effect of antibody-mediated Ang-2 blockage on atherogenesis after in a mouse model of atherosclerosis. Methods: Hypercholesterolemic (low-density lipoprotein receptor(-/-) apolipoprotein B-100/100) mice were subjected to high-cholesterol diet for eight weeks, one group with and one group without Ang-2 blocking antibody treatment during weeks 4-8. To enhance plaque development, a peri-adventitial collar was placed around the carotid arteries at the start of antibody treatment. Aortic root, carotid arteries and brachiocephalic arteries were analyzed to evaluate the effect of Ang-2 blockage on atherosclerotic plaque size and stable plaque characteristics. Results: Anti-Ang-2 treatment reduced the size of fatty streaks in the brachiocephalic artery (-72%, p <0.05). In addition, antibody-mediated Ang-2 blockage reduced plasma triglycerides (-27%, p <0.05). In contrast, Ang-2 blockage did not have any effect on the size or composition (collagen content, macrophage percentage, adventitial microvessel density) of pre-existing plaques in the aortic root or collar-induced plaques in the carotid artery. Conclusions: Ang-2 blockage was beneficial as it decreased fatty streak formation and plasma triglyceride levels, but had no adverse effect on pre-existing atherosclerosis in hypercholesterolemic mice. (C) 2015 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe

    Quantification of Bound Microbubbles in Ultrasound Molecular Imaging

    Get PDF
    Molecular markers associated with diseases can be visualized and quantified noninvasively with targeted ultrasound contrast agent (t-UCA) consisting of microbubbles (MBs) that can bind to specific molecular targets. Techniques used for quantifying t-UCA assume that all unbound MBs are taken out of the blood pool few minutes after injection and only MBs bound to the molecular markers remain. However, differences in physiology, diseases, and experimental conditions can increase the longevity of unbound MBs. In such conditions, unbound MBs will falsely be quantified as bound MBs. We have developed a novel technique to distinguish and classify bound from unbound MBs. In the post-processing steps, first, tissue motion was compensated using block-matching (BM) techniques. To preserve only stationary contrast signals, a minimum intensity projection (MinIP) or 20th-percentile intensity projection (PerIP) was applied. The after-flash MinIP or PerIP was subtracted from the before-flash MinIP or PerIP. In this way, tissue artifacts in contrast images were suppressed. In the next step, bound MB candidates were detected. Finally, detected objects were tracked to classify the candidates as unbound or bound MBs based on their displacement. This technique was validated in vitro, followed by two in vivo experiments in mice. Tumors (n = 2) and salivary glands of hypercholesterolemic mice (n = 8) were imaged using a commercially available scanner. Boluses of 100 mu L of a commercially available t-UCA targeted to angiogenesis markers and untargeted control UCA were injected separately. Our results show considerable reduction in misclassification of unbound MBs as bound ones. Using our method, the ratio of bound MBs in salivary gland for images with targeted UCA versus control UCA was improved by up to two times compared with unprocessed images

    Quantification of bound microbubbles in ultrasound molecular imaging

    Get PDF
    Molecular markers associated with diseases can be visualized and quantified noninvasively with targeted ultrasound contrast agent (t-UCA) consisting of microbubbles (MBs) that can bind to specific molecular targets. Techniques used for quantifying t-UCA assume that all unbound MBs are taken out of the blood pool few minutes after injection and only MBs bound to the molecular markers remain. However, differences in physiology, diseases, and experimental conditions can increase the longevity of unbound MBs. In such conditions, unbound MBs will falsely be quantified as bound MBs. We have developed a novel technique to distinguish and classify bound from unbound MBs. In the post-processing steps, first, tissue motion was compensated using block-matching (BM) techniques. To preserve only stationary contrast signals, a minimum intensity projection (MinIP) or 20th-percentile intensity projection (PerIP) was applied. The after-flash MinIP or PerIP was subtracted from the before-flash MinIP or PerIP. In this way, tissue artifacts in contrast images were suppressed. In the next step, bound MB candidates were detected. Finally, detected objects were tracked to classify the candidates as unbound or bound MBs based on their displacement. This technique was validated in vitro, followed by two in vivo experiments in mice. Tumors (n = 2) and salivary glands of hypercholesterolemic mice (n = 8) were imaged using a commercially available scanner. Boluses of 100 μL of a commercially available t-UCA targeted to angiogenesis markers and untargeted control UCA were injected separately. Our results show considerable reduction in misclassification of unbound MBs as bound ones. Using our method, the ratio of bound MBs in salivary gland for images with targeted UCA versus control UCA was improved by up to two times compared with unprocessed images
    corecore