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Abstract—Molecular markers associated with diseases can 
be visualized and quantified noninvasively with targeted ultra-
sound contrast agent (t-UCA) consisting of microbubbles 
(MBs) that can bind to specific molecular targets. Techniques 
used for quantifying t-UCA assume that all unbound MBs are 
taken out of the blood pool few minutes after injection and 
only MBs bound to the molecular markers remain. However, 
differences in physiology, diseases, and experimental conditions 
can increase the longevity of unbound MBs. In such condi-
tions, unbound MBs will falsely be quantified as bound MBs. 
We have developed a novel technique to distinguish and clas-
sify bound from unbound MBs. In the post-processing steps, 
first, tissue motion was compensated using block-matching 
(BM) techniques. To preserve only stationary contrast signals, 
a minimum intensity projection (MinIP) or 20th-percentile in-
tensity projection (PerIP) was applied. The after-flash MinIP 
or PerIP was subtracted from the before-flash MinIP or PerIP. 
In this way, tissue artifacts in contrast images were suppressed. 
In the next step, bound MB candidates were detected. Finally, 
detected objects were tracked to classify the candidates as un-
bound or bound MBs based on their displacement. This tech-
nique was validated in vitro,  followed by two in vivo experi-
ments in mice. Tumors (n = 2) and salivary glands of 
hypercholesterolemic mice (n = 8) were imaged using a com-
mercially available scanner. Boluses of 100 µL of a commer-
cially available t-UCA targeted to angiogenesis markers and 
untargeted control UCA were injected separately. Our results 
show considerable reduction in misclassification of unbound 
MBs as bound ones. Using our method, the ratio of bound 
MBs in salivary gland for images with targeted UCA versus 
control UCA was improved by up to two times compared with 
unprocessed images.

I. Introduction

Molecular imaging with ultrasound using targeted 
ultrasound contrast agents (t-UCA) is a valuable 

tool that is being used increasingly for noninvasive quan-
tification of angiogenesis [1]. Angiogenesis is known to be 
an essential marker of tumor growth and metastasis [2]. 
Various biomarkers associated with angiogenesis can be 
detected and quantified with different techniques such as 
positron emission tomography [3], magnetic resonance im-
aging [4], computed tomography [5], optical imaging [6], 
and ultrasonography using t-UCA [7]. Molecular imaging 
using t-UCA is a compelling imaging technique because it 
allows real-time monitoring of anatomy and functionality 
and it is inexpensive and portable [7]. This technique has 
been applied to characterize atherosclerosis [8], thrombo-
sis [9], neovasculature [9], [10], lymph nodes [11], and in-
flammation [12], [13]. Also, ultrasound molecular imaging 
has been proven to be highly sensitive to the identification 
of molecular structures or expression when using t-UCA; 
thus, it provides helpful insights into genesis, progression, 
and prevention of diseases [14]–[18].

The most widely utilized methods for contrast ultra-
sound molecular imaging encompass injection of t-UCA 
followed by a waiting time (up to 10 min) to allow bind-
ing to targets and clearance of unbound microbubbles 
(u-MBs) from the blood. Consecutively, a combination 
of ultrasound imaging sequences and a high-power burst 
(flash) are applied, where the flash is used to destroy all 
MBs in the imaging plane. The intensity difference before 
and after the flash corresponds to the amount of bound 
MBs (b-MBs) which is a measure for molecular signals (we 
call this the classical approach in this manuscript) [10], 
[19]–[21]. In such methods, the quantification of b-MBs is 
strongly dependent on the injected t-UCA dose, imaging 
system gain, local perfusion [22], and the physiology and 
the state of the animal. However, in many conditions such 
as presence of tissue motion, high concentration of freely 
recirculating u-MBs after the waiting period, limited num-
ber of recorded frames, low frame rates, and small region 
of interest (ROI), such classical methods will not result in 
reliable quantification of b-MBs. Moreover, because these 
techniques are strongly dependent on imaging system set-
tings, comparisons between different studies performed 
with different imaging settings are not yet possible.
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We have developed a new quantification method which 
benefits from motion compensation and individual con-
trast spot detection, and is capable of distinguishing the 
b-MB from u-MB based on their displacement. Our quan-
tification method can be applied in studies performed with 
different imaging settings because it is less sensitive to 
imaging parameters. Moreover, it is more robust to tissue 
motion artifacts.

II. Methods

A high-frequency preclinical ultrasound scanner was 
operated at 18 MHz, with a 256-element linear-array 
transducer (Vevo 2100 with MS250 probe, VisualSonics 
Inc., Toronto, ON, Canada). The used MS250 probe has 
a center frequency of 22.5 MHz and a −6-dB two-way 
bandwidth of 70% (15 to 30 MHz) [23]. The transducer 
operated at 10% transmit power (~400 kPa at the focus 
of the probe, MI of 0.1) in the contrast mode and wide 
beam-width setting was chosen to have a low, uniform 
transmit pressure over depth. Side-by-side B-mode and 
nonlinear contrast mode images were acquired with a 
frame rate of 30 to 40 frames per second. Nonlinear funda-
mental imaging with amplitude modulation [23] was used 
for the contrast images. Lossless DICOM (digital imaging 
and communications in medicine) images were exported 
to Matlab (The MathWorks Inc., Natick, MA, USA) for 
further processing.

A. Imaging Protocol

Fig. 1(a) schematically shows a time sequence for mo-
lecular imaging in mice. After injecting the t-UCA, a wait-
ing time of about 10 min is required for u-MBs to be 
taken out of the blood circulation by the lungs and liver. 
Also, this waiting period gives more time for the t-MBs 
to find the binding sites, thus increasing the number of t-

MBs attached to the desired biomarker. After the 10-min 
waiting period, a series of about 300 frames (~10 s) was 
acquired with high-power bursts in the middle to disrupt 
all MBs in the imaging plane. A schematic representa-
tion of a typical time–intensity curve in the ROI is shown 
in Fig. 1(b) for two separate UCA injections (t-UCA in 
blue and non-targeted (control) UCA in red). Shortly af-
ter injecting the UCA, the intensity of contrast in the ROI 
increases rapidly, reaching a maximum and followed by a 
slow decay of intensity for both t-UCA and control UCA 
(c-UCA). However, because of the binding of the t-MBs to 
the targeted biomarkers in the ROI, the level of intensity, 
10 min after the injection, will be higher for t-UCA than 
for c-UCA. Ideally, 10 min after injecting c-UCA, image 
intensity in the ROI should fall back to the baseline level 
(similar to the level before injection) and there should be 
no difference in image intensity before and after the flash 
pulse. On the other hand, there will be a difference in the 
intensity levels for t-UCA before and after the flash be-
cause of the b-MBs, which is a measure of the molecular 
signals in the ROI. Unfortunately, such an ideal situation 
will not always happen and even 10 min after injection 
there will be recirculating u-MBs for both t-UCA and c-
UCA injections. Therefore, the actual difference in the 
intensity of the pre- and post-flash frames depends on the 
amount of both b-MBs and u-MBs the ROI. The increase 
in the intensity after the flash is also showing the presence 
of recirculating u-MBs.

B. Quantification Method

Subsets of the images captured 10 min after injecting 
the UCA were used for quantification of the b-MB in the 
ROI. The flowchart in Fig. 2 shows the steps of our quan-
tification method.

Correction for tissue motion in the imaging plane was 
the first step of our technique. Akkus et al. [24] have de-
veloped an algorithm for tracking tissue motion for local 
contrast quantification using multidimensional dynamic 
programming (MDP) [25] combined with apodized block 

Fig. 1. (a) Timeline of the imaging protocol and (b) schematic repre-
sentation of a typical time–intensity curve in the region of interest (e.g., 
salivary gland) corresponding to the timeline [intensity level for targeted 
microbubbles is slightly shifted from non-targeted (control) microbub-
bles for better illustration].

Fig. 2. Flowchart showing the steps of our technique for the quantifica-
tion and classification of bound targeted microbubbles.
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matching (BM). This technique was adapted for the fea-
tures of our DICOM images such as pixel size and inten-
sity range and applied to the acquired images. The motion 
pattern of tissue in the ROI was extracted from B-mode 
images and applied to the contrast images to correct the 
motion of the ROI. In BM, a 60 × 40 (lateral × axial) 
pixel (2.4 × 1.6 mm) fixed template derived from the cho-
sen B-mode image was scanned over a 60 × 20 (lateral × 
axial) pixel (2.4 × 0.8 mm) search field. Then, normalized 
correlation coefficients (NCC) for each 2-D displacement 
in each frame were used to construct a 3-D block of cost 
values. MDP was used to find the optimal 2-D tissue dis-
placement path over time (the connective path in the time 
direction that had the highest sum of NCC values).

The noise levels in each data set were obtained by 
drawing an ROI in the background of a contrast frame im-
mediately after the flash pulse and calculating the mean 
intensity value (µ) and standard deviation (σ) in the ROI. 
Then, all image intensities below a noise threshold level of 
µ + 4 × σ were set to zero. In the next step, the motion-
compensated contrast-mode frames were separated into 
two groups: pre-flash and post-flash. To show the effect of 
the number of frames on our quantification method, two 
subsets of images were chosen: a subset of 20 frames as 
the short sequence (10 frames each from pre- and post-
flash groups); and a subset of 100 frames as the long se-
quence (50 frames each from pre- and post-flash groups). 
Next, a minimum intensity projection was applied on all 
the frames of each pre- and post-flash group resulting in 
a single minimum intensity projection (MinIP) image for 
each of these groups. The MinIP technique will collect 
per pixel the minimum intensity throughout all frames. 
In this way, the signal of nonstationary contrast spots 
will be minimized, because for each pixel the intensity 
will be low at some time point. Then, each of the single 
pre- and post-flash MinIP images were smoothened us-
ing a 2-D Gaussian filter of 3 × 3 pixels with σ = 1 to 
remove background noise (e.g., electronic noise). Objects 
smaller than the characteristic bubble size are removed 
with this filter. Because the MinIP step is a very radical 
step for removing the moving contrast spots which might 
also erroneously remove b-MBs, an alternative intensity 
projection step based on the 20th percentile of the in-
tensity distribution per pixel over time (PerIP) was also 
applied instead of MinIP. The PerIP is more forgiving 
toward short-intensity variations or out-of-plane motion 
effects. The frames were smoothened using the same 2-D 
Gaussian filter before applying the PerIP. The resulting 
post-flash MinIP or PerIP images were subtracted from 
the pre-flash counterpart to reduce stationary artifacts 
and remaining tissue signal.

In the subtracted MinIP or PerIP images, individual 
contrast spots were detected using artificial bubble tem-
plates [26]. The templates mimic size and intensity pat-
tern of contrast spots. Several radii (3, 5, and 7 pixels) of 
artificial bubbles were used for detection of different sizes 
of contrast spots. Each artificial template was scanned 
over the chosen ROI and normalized cross-correlation 

coefficients were calculated. In the resulting correlation 
coefficient matrix, the maximal correlation was located. 
After that, the correlation values in a 10 × 10 pixel-neigh-
borhood around this location were set to zero. This was 
iteratively performed until the maximal correlation value 
was below 0.6, which is the threshold for a contrast spot 
to be considered as a bubble.

Ideally, after these processing steps, what should re-
main is the signal from the bound, stationary MBs that 
were destroyed by the flash. However, because of the low 
frame rate, the limited number of frames and also the high 
concentration of recirculating MBs, in some cases there 
will still be some u-MBs in the resulting image. Therefore 
further processing is required to classify the true b-MB 
from such u-MB. This was done by tracking all the de-
tected MBs in the subset of 10 frames (short sequence) or 
50 frames (long sequence) in the pre-flash image set. The 
tracking algorithm was based on MDP combined with BM 
as is described in [24], [26]. All the detected MBs with 
displacement less than 3 pixels (~60 µm) were classified as 
stationary or b-MBs and the rest were discarded as u-MB.

In the classical approach, pre- and post-flash frames 
were averaged and subtracted from each other. Then, the 
total intensity in the subtracted image was calculated for 
a ROI and normalized to the area of the ROI. The results 
of the classical approach were compared with the results 
of our quantification method in vivo, using the same ROI 
in the subtracted MinIP and PerIP images.

C. In Vitro Experiment

An in vitro experiment was conducted to validate the 
ability of the MinIP and PerIP in reducing the u-MBs and 
also the classification step based on the single contrast 
spot detection and tracking. A thin layer (5 mm) of tissue-
mimicking material (TMM) was prepared according to the 
recipe of Teirlinck et al. [27]. Target-ready UCAs were pre-
pared from MicroMarker kit (VisualSonics Inc. Toronto, 
Canada) according the manufacturer’s recipe. The TMM 
was placed at the bottom of a water tank filled with de-
gassed water and a low concentration of MicroMarker was 
injected above the top of the material. The imaging probe 
(MS 250) was mounted 17 mm above the phantom and 
the focal zone was set at the top of the phantom. Then, 
side-by-side B-mode and contrast-mode images of MBs 
being pushed toward the phantom due to the radiation 
force were acquired. The imaging settings and acquisition 
protocol were similar to those used in vivo.

D. In Vivo Experiment

UCA were prepared as described for the in vitro ex-
periment. MBs were targeted with biotinylated scVEGF 
(SibTech, Brookfield, CT, USA) or with biotinylated an-
tibodies against αvβ3-integrin (BD Biosciences, San Jose, 
CA, USA) for making t-UCA. Inactive forms of biotinyl-
ated scVEGF (SibTech) and biotinylated IgG(κ) (BD Bio-
sciences) were used for making the c-UCA.
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First, well-vascularized subcutaneous Huh7 tumors 
with numerous targeting sites were imaged, for which the 
classical method shows good differences for targeted and 
control injections. Our method was compared with the 
classical method and validated in this model. Second, sali-
vary glands as a model with weaker molecular signals were 
analyzed as a test of our method.

For the first experiment at Erasmus Medical Center, 
8-week-old male NMRI nu/nu mice (n = 2) were pur-
chased from Charles River Laboratories (Margate, UK) 
and fed ad libitum. Animals were kept under 2% isoflurane 
anesthesia and 5 × 106 Huh7 cells, a human hepatocellular 
carcinoma cell line, were injected in total volume of 100 
µL in the right hind limb. When the tumor size reached 
8 mm, animals were anesthetized with 2% isoflurane and 
placed on the Vevo Rail System heating stage (VisualSon-
ics Inc.) and ultrasound imaging was performed. First, a 
bolus of 100 μL of control MicroMarker UCA was injected 
and 20 min after the first injection a bolus of 100 μL of 
t-UCA was injected via a tail vein catheter, with a flush 
of 0.9% saline after both injections. The injections were 
done using a programmable syringe pump (11 Pico Plus 
Elite, Harvard Apparatus, Kent, UK) with a rate of 600 
μL per minute.

The second experiment was conducted at Maastricht 
University on hypercholesterolemic male ApoE knockout 
mice (n = 8) on a C57/BI6 background from an in-house 
breeding colony (originally from Iffa Credo, Lyon, France) 
and fed chow till the age of 50 weeks. Mice were anesthe-
tized with ketamine (0.1 g/kg) and xylazine (0.02 g/kg) 
by subcutaneous injection and peri-operative ibuprofen 
(s.c.). Animals were intubated and artificially ventilated 
using room air at the rate of 160 strokes per minute. The 
left jugular vein was exposed, and a heat-stretched poly-
ethylene-25 cannula was inserted (1.5 cm) and subcutane-
ously guided to the neck of the mouse. Here the catheter 
was fixed, extended, filled with heparinized saline (10 U/
mL), and plugged. The rest of the experimental procedure 
was similar to the previous animals except that the UCA 
injections were done via the jugular vein cannula and the 
order of the injections was randomized in these animals. 
The right salivary gland was chosen as a target for this 
study, as it contains abundant neovascularization which 
expresses biomarkers to which our t-UCA could bind.

All animal work was approved by the regulatory au-
thorities of Erasmus Medical Center and Maastricht Uni-
versity and performed in compliance with the Dutch gov-
ernment regulations.

III. Results

A. In Vitro Experiments

Fig. 3(a) shows a single frame of a B-mode recording of 
a layer of TMM (bright layer in the bottom of the image) 
and MBs floating above, in degassed water (bright spots 
floating in the dark background) . Because of the radia-

tion force of the ultrasound, MBs were pushed toward the 
bottom, against the TMM layer. The MBs which were at 
the TMM layer from the beginning were not moving dur-
ing the recorded frames, and therefore could be considered 
as stationary MBs. The MinIP images of the pre- and 
post- flash frames and their subtracted image for the short 
sequence (20 frames) are also shown in Figs. 3(b)–3(d). 
In Fig. 3(d), the stationary tissue signal was suppressed 
because it was present in both pre- and post-flash frames 
whereas the signals from the MBs were preserved in the 
subtraction step because they were destroyed by the flash 
and were not present in the post-flash frames.

MinIp and PerIP images were applied on short and 
long sequences and the results are depicted in Fig. 4. Some 
floating MBs were still preserved in both the MinIP and 
PerIP images when the short sequences were used [Figs. 
4(a) and 4(b)] with a few more MBs in the PerIP image. 
However, when the long sequences were used all the float-
ing MBs were suppressed in both the MinIP and PerIP 
images and only those stationary MBs just above the 
TMM layer were preserved [Figs. 4(c) and 4(d)].

The MB detection and tracking steps were applied on 
images of Figs. 4(a) and 4(b). All the detected MBs in the 
images were overlaid as red dots and indicated with white 
arrows in Figs. 4(a) and 4(b). All such detected contrast 
spots were tracked over all pre-flash frames in the short se-
quence (10 frames) and those with total motion less than 
3 pixels were classified as stationary MBs and overlaid as 
yellow circles on these figures.

Four extra MBs were detected in the PerIP image [num-
bered from 1 to 4 in Fig. 4(b)] compared with the MinIP 
image. However, after tracking all the MBs and accepting 
only those which were moving less than 3 pixels [yellow 
circles in Figs. 4(a) and 4(b)], the same four stationary 
MBs were detected in both images.

Fig. 3. In vitro validation experiment: (a) B-mode image, (b) MinIP of 
pre-flash B-mode frames (10 frames), (c) MinIP of post-flash B-mode 
frames (10 frames), and (d) their subtracted image.
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B. In Vivo Experiments

The motion compensation step is crucial in vivo, espe-
cially when fast-moving targets such as plaques in carotid 
artery walls are imaged. Fig. 5 shows the result of our 
motion tracking for a point on the upper wall of the right 
common carotid of a mouse in radial [Fig. 5(a)] and longi-
tudinal [Fig. 5(b)] directions.

Our motion compensation method provides motion de-
tection with a smallest step of 0.1 pixel. In general, it is 
more difficult to follow the longitudinal motion of the ves-
sel because the speckle pattern of the wall tissue is very 
similar along the longitudinal direction. The error seen in 

Fig. 5(b) which looks like a quantization error is possibly 
caused by a shadow artifact in the image, hindering the 
tracking beyond a certain point.

Fig. 6 shows the result of our experiment on two tu-
mors in B-mode [Figs. 6(a) and 6(d)] and contrast mode 
10 min after injecting t-UCA [Figs. 6(b) and 6(e)] and 
c-UCA [Figs. 6(c) and 6(f)]. In both tumors, an enhanced 
intensity can be seen for the t-UCA [Figs. 6(b) and 6(e)] 
compared with the c-UCA [Figs. 6(c) and 6(f)].

Our quantification method and the classical approach 
were performed on the data set of these two tumors and 
the results are presented in Fig. 7. In both cases there 
are many b-MBs in the tumor for the targeted group and 
the difference between the targeted and control group is 
visible with the most commonly used classical approach. 
This confirms that our new method also gives good re-
sults in a situation with a high concentration of MBs 
and is similar to the classical method. The intensities 
obtained from the subtracted PerIP were less sensitive 

Fig. 4. Subtracted images after applying MinIP on (a) the short sequence 
and (c) the long sequence and after PerIP on (b) the short sequence and 
(d) the long sequence. In (a) and (b), detected microbubbles are overlaid 
as red dots and pointed out with white arrows and stationary microbub-
bles as yellow circles. Extra detected microbubbles in (b) are numbered.

Fig. 5. Displacement of upper wall of right common carotid in radial 
(a) and longitudinal (b) directions in a mouse using automated motion 
tracking.

Fig. 6. (a and d) B-mode and (b–f) contrast mode ultrasound single frame images of two subcutaneous Huh7 liver tumors in two different mice (a, 
b, and c) tumor 1, (d, e, and f) tumor 2. (b and e) contrast mode images 10 min after injecting the targeted microbubbles. (c and f) contrast mode 
image 10 min after injecting the control microbubbles.
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to the number of frames used in the analysis. The inten-
sity in the subtracted MinIP image for the long sequence 
was about three times lower than for the short sequence. 
After tracking and classifying the detected MBs in both 
the subtracted MinIP and PerIP images, the number of 
detected b-MBs are shown in Figs. 7(b) and 7(d). These 
results were in very good agreement with what we visu-
ally saw in these tumors and also with the results of the 
classical method.

For the second in vivo experiment on salivary glands, 7 
mice out of 8 showed successful targeting; see Fig. 8. The 
intensities within the salivary glands for these 7 mice were 
quantified using the classical method for the t-UCA and 
c-UCA injections. Also, the numbers of detected b-MBs 
using our method were calculated for these two injections 
for the short sequences. The ratio of intensities and the 
ratio of number of b-MBs in the targeted group over the 
control group for these 7 mice are presented as boxplots 
in Fig. 9. The boxplots in Fig. 9 show that the classical 
quantification approach does not show a big difference be-
tween the targeted and control injections. In contrast, our 
technique, which detects the number of b-MBs, clearly 
enhances the difference between these two injections. Also, 

a higher mean ratio in these 7 animals was observed when 
the MinIP is used compared with when PerIP is used.

IV. Discussion

We have developed a method which detects single con-
trast spots and classifies them into bound and unbound 
MBs based on their displacement in the recorded frames. 
The processing steps such as motion compensation and 
MinIP or PerIP assure that artifacts resulting from the 
motion of the ROI are minimized and only the station-
ary contrast spots are enhanced. In an in vitro setup, we 
showed that applying the MinIP or PerIP is sufficient to 
discard the u-MBs in the image if the recorded sequences 
are long enough (50 frames for each pre- and post-flash 
group). However, because of the limited number of record-
ed frames, limited frame rate, motion artifacts, complex 
in vivo conditions and variations in the concentration of 
remaining u-MBs in animals, the MB detection, tracking 
and classification steps will be beneficial in vivo (Figs. 
6–9). Additionally, quantification of the molecular signals 
as number of b-MBs instead of image intensities is less de-

Fig. 7. Comparison of bound microbubbles quantifications on two tumors (a and b) tumor 1, (c and d) tumor 2. (a and c) Differences of pre- and 
post-flash image intensities in two tumors according to the classical subtraction method compared with differences of image intensities after applying 
MinIP and alternative intensity projection based on the PerIP and (b and d) number of detected bound microbubbles after performing our method 
on short and long sequences.
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pendent on imaging settings and therefore more valuable 
for comparison and longitudinal studies.

The PerIP step was tested as an alternative to MinIP, 
because in the MinIP contrast spots will be disqualified 
even if they disappear in a single frame of the sequence, 
e.g., due to out-of-plane motion. The 20th percentile was 
chosen to deal with heartbeat-related motion, where we 
have about 10 frames per heartbeat. Using the 20th per-
centile ensures that the contrast spots, which might dis-
appear in one or two frames per cardiac cycle, will still 
be preserved after the PerIP step. Although using PerIP 
instead of MinIP may preserve more u-MBs in cases of low 
number of frames or slow moving MBs [MBs labeled with 
1 to 4 in Fig. 4(b)], the MB detection and tracking steps 
are able to distinguish them from truly stationary MBs.

In vitro, we showed that all the MBs after the MinIP 
and PerIP steps for the short sequence are detected 
and tracked correctly [see the complementary video file  
( ) which shows the tracking of all the detected contrast 
spots in Fig. 4(b) over all 10 frames]. Velocity of the mov-
ing MBs in our in vitro experiment was calculated to be 
around 0.8 mm/sec. This is a representative model for 
larger microvessels considering the velocity of red blood 
cells in mice tumor microvasculature (0.006 to 1.2 mm/
sec [28]).

Although our quantification method successfully de-
tected and tracked the MBs in vitro, it needed to be val-
idated in a more complex in vivo condition. Therefore, 
the in vivo experiments on the murine tumor model were 
conducted (n = 2) (Fig. 6). In this model, the results 
of our method showed very good agreement with visual 
evaluation of the images and the classical approach (Fig. 

7). Intensities in the subtracted MinIP and PerIP images 
for short and long sequences showed significant differences 
for the targeted and control injections in these subjects. 
As expected, PerIP was less sensitive to the length of the 
analyzed sequences. However, when MinIP was applied, 
in the longer sequence more contrast spots were missed 
in the images because of out-of-plane motion. Therefore, 
for our quantification method with the MinIP step, short 
sequences are more suitable. In the case of long sequences, 
the PerIP step performed better than the MinIP step. 
Although gated acquisition (e.g., ECG) can be applied in 
applications with more severe out-of-plane motion, it can 
introduce errors in tracking contrast spots because of its 
lower frame rate. These in vivo experiments showed that 
our quantification method is specific to the b-MBs in a 
complex in vivo environment.

Fig. 8. (a) B-mode and (b–d) contrast mode ultrasound images of right salivary gland and right carotid including the bifurcation of an ApoE −/−, 
50-week-old mouse. (b) the contrast mode before injecting the UCA, (c and d): single frame unprocessed images 10 min after injecting (c) targeted 
and (d) control microbubbles and their corresponding processed images for salivary gland by (e and g) MinIP and (f and h) PerIP. All the bright 
spots in the (e)–(h) images are contrast signals.

Fig. 9. Ratio of image intensities and ratio of number of detected bound 
microbubbles in targeted UCA injection versus control injection in the 
salivary gland of 7 mice.

http://dx.doi.org/10.1109/TUFFC.2015.006264/mm1
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The right salivary glands of 8 mice were scanned in the 
second in vivo experiment to test our method. Being right 
above the pulsating carotid, this target moves more than 
the tumor model. Quantification of the b-MBs with the 
classical approach in such a model is more difficult than 
the tumor model because of larger motion artifacts, less 
binding of the t-MBs, and more recirculating leftover MBs 
10 min after injection. However, using our quantification 
method, sensitivity of the molecular imaging with t-MBs 
was improved for such a target (Figs. 8 and 9). The ratio 
of the intensity and number of detected b-MBs in targeted 
injections verssus the control injections were presented in 
Fig. 9 for 7 out of 8 scanned animals. One animal was 
discarded from the analysis because b-MBs were higher in 
the control injection than in the targeted injection (per-
haps because of some leftover t-UCA in the injection tubes 
from the first injection). The result of our quantification 
method in this in vivo model for both the MinIP and 
PerIP approaches show higher ratios of targeted over con-
trol injection than the classical approach. Applying the 
MB detection and tracking steps on the subtracted MinIP 
images showed the highest average ratio for the targeted 
injection versus the control injection, although the abso-
lute number of b-MBs was the highest when PerIP was 
applied. This is due to the fact that there are more b-MBs 
missed by the MinIP step than by the PerIP. Therefore, 
the number of detected bound MBs in the control injec-
tion will also be lower when MinIP is applied. Because the 
number of b-MBs in the control injection is often very low, 
a small change can increase such a ratio of detected MBs. 
This implies that the PerIP approach might be a better 
option for general applications.

There have been some studies proposing methods for 
selectively imaging the b-MBs in real time: utilizing an 
image-push-image sequence [22]; transmission at a low 
frequency and reception at a high frequency [29]; using 
subharmonic response of the MBs and interframe filtering 
[30]; and using singular value spectra properties [31]. How-
ever, none of the proposed methods in the mentioned pub-
lications have been applied in a complex in vivo condition. 
Only Pysz et al. on developed a quantification method 
based on dwell time MB signal measurements which was 
tested in vivo in well vascularized tumors in mice [32]. In 
such an in vivo model where attachment of t-MBs is sig-
nificant, the classical way of quantification also performs 
well. Thus, the performance of the method developed by 
Pysz et al. in applications with very few t-MBs in pres-
ence of circulating MBs remains unclear. Our quantifica-
tion method, on the other hand, has shown reliable detec-
tion of molecular signals in vivo in cases with many as 
well as very few b-MBs, although it is an offline image-
processing method. Moreover, counting the b-MBs instead 
of reporting a sum of image intensities in the ROI implies 
that the result does not need to be adjusted for imag-
ing parameters such as gain, dynamic range, attenuation, 
etc. This gives the opportunity to compare studies done 
with different ultrasound systems. Motion compensation, 
contrast detection, and tracking steps of our method have 

been validated previously (see [24] and [26]). However, the 
falsely detected and missed b-MBs in more complex in 
vivo conditions must be quantified more accurately than 
visual validation.

Our quantification methods have been validated for 
high-frequency ultrasound. Although high-frequency ul-
trasound has its limitation in clinical application because 
of the limited penetration depth, we believe our technique 
can also be applied on images acquired at lower frequen-
cies because individual MBs can be imaged at frequencies 
as low as 7 MHz [33]. Another concern for the applica-
tion of t-UCA in humans is the waiting time for freely 
floating MBs. The major factor to consider is therefore 
the half-life of MBs in the bloodstream. Definity (DuPont 
Pharmaceuticals, Bristol-Myers-Squibb, N. Billerica, MA, 
USA) and SonoVue (Bracco Diagnostic, Milano, Italy), 
both commercially available contrast agents for human 
use, have a half-life of ~6 min [34], [35] which is similar to 
that in mice (~7 min [36]). If targeted microbubbles based 
on these contrast agents have a similar half-life, a waiting 
time of 10 min would be sufficient.

V. Conclusion

A dedicated targeted ultrasound contrast agent quan-
tification method has been developed to reliably detect 
individual contrast spots and classify them into bound 
and unbound microbubbles in vitro and in vivo. Because 
of the pre-processing steps such as motion compensation, 
minimum intensity projection, and 20th-percentile inten-
sity projection, this technique should be more reliable and 
robust in different experimental conditions.
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