377 research outputs found

    Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum

    Get PDF
    Constraining the greenhouse gas forcing, climatic warming and estimates of climate sensitivity across ancient large transient warming events is a major challenge to the palaeoclimate research community. Here we provide a new compilation and synthesis of the available marine proxy temperature data across the largest of these hyperthermals, the Paleocene-Eocene Thermal Maximum (PETM). This includes the application of consistent temperature calibrations to all data, including the most recent set of calibrations for archaeal lipid-derived palaeothermometry. This compilation provides the basis for an informed discussion of the likely range of PETM warming, the biases present in the existing record and an initial assessment of the geographical pattern of PETM ocean warming. To aid interpretation of the geographic variability of the proxy-derived estimates of PETM warming, we present a comparison of this data with the patterns of warming produced by high pCO2 simulations of Eocene climates using the Hadley Centre atmosphere-ocean general circulation model (AOGCM) HadCM3L. On the basis of this comparison and taking into account the patterns of intermediate-water warming we estimate that the global mean surface temperature anomaly for the PETM is within the range of 4 to 5Ā°C

    Eocene Circulation Of The Southern Ocean: Was Antarctica Kept Warm By Subtropical Waters?

    Get PDF
    Near the Eocene\u27s close (āˆ¼34 million years ago), the climate system underwent one of the largest shifts in Earth\u27s history: Antarctic terrestrial ice sheets suddenly grew and ocean productivity patterns changed. Previous studies conjectured that poleward penetration of warm, subtropical currents, the East Australian Current (EAC) in particular, caused Eocene Antarctic warmth. Late Eocene opening of an ocean gateway between Australia and Antarctica was conjectured to have disrupted the EAC, cooled Antarctica, and allowed ice sheets to develop. Here we reconstruct Eocene paleoceanographic circulation in the Tasmanian region, using (1) biogeographical distributions of phytoplankton, including data from recently drilled Ocean Drilling Program Leg 189 sites and (2) fully coupled climate model simulations. We find that the EAC did not penetrate to high latitudes and ocean heat transport in the region was not greater than modern. Our results do not support changes in ā€œthermal isolationā€ as the primary driver of the Eocene-Oligocene climatic transition

    Physiological control on carbon isotope fractionation in marine phytoplankton

    Get PDF
    One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (Ļµp) in phytoplankton in response to changing CO2 concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO2 levels. Phytoplankton organic carbon is depleted in 13C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO2 concentrations [CO2] on Ļµp. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in Ļµp for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production / [CO2]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in Ļµp between studies, although day length was an important predictor for Ļµp in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments

    Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum

    Get PDF
    The Middle Eocene Climatic Optimum (around 40 million years ago) was a roughly 400,000-year-long global warming phase associated with an increase in atmospheric CO2 concentrations and deep-ocean acidifcation that interrupted the Eoceneā€™s long-term cooling trend. The unusually long duration, compared with early Eocene global warming phases, is puzzling as temperature-dependent silicate weathering should have provided a negative feedback, drawing down CO2 over this timescale. Here we investigate silicate weathering during this climate warming event by measuring lithium isotope ratios (reported as Ī“7 Li), which are a tracer for silicate weathering processes, from a suite of open-ocean carbonate-rich sediments. We fnd a positive Ī“7 Li excursionā€”the only one identifed for a warming event so far ā€”of ~3ā€°. Box model simulations support this signal to refect a global shift from congruent weathering, with secondary mineral dissolution, to incongruent weathering, with secondary mineral formation. We surmise that, before the climatic optimum, there was considerable soil shielding of the continents. An increase in continental volcanism initiated the warming event, but it was sustained by an increase in clay formation, which sequestered carbonate-forming cations, short-circuiting the carbonateā€“silicate cycle. Clay mineral dynamics may play an important role in the carbon cycle for climatic events occurring over intermediate (i.e., 100,000 year) timeframes

    The dispersal of fluvially discharged and marine, shelf-produced particulate organic matter in the northern Gulf of Mexico

    Get PDF
    Rivers play a key role in the global carbon cycle by transporting terrestrial organic matter (TerrOM) from land to the ocean. Upon burial in marine sediments, this TerrOM may be a significant long-term carbon sink, depending on its composition and properties. However, much remains unknown about the dispersal of different types of TerrOM in the marine realm upon fluvial discharge since the commonly used bulk organic matter (OM) parameters do not reach the required level of source- and process-specific information. Here, we analyzed bulk OM properties, lipid biomarkers (long-chain n-alkanes, sterols, long-chain diols, alkenones, branched and isoprenoid glycerol dialkyl glycerol tetraethers (brGDGTs and isoGDGTs)), pollen, and dinoflagellate cysts in marine surface sediments along two transects offshore the Mississippi-Atchafalaya River (MAR) system, as well as one along the 20 m isobath in the direction of the river plume. We use these biomarkers and palynological proxies to identify the dispersal patterns of soil-microbial organic matter (SMOM), fluvial, higher plant, and marine-produced OM in the coastal sediments of the northern Gulf of Mexico (GoM). The Branched and Isoprenoid Tetraether (BIT) index and the relative abundance of C32 1,15-diols indicative for freshwater production show high contributions of SMOM and fluvial OM near the Mississippi River (MR) mouth (BIT Combining double low line 0.6, FC321,15 > 50 %), which rapidly decrease further away from the river mouth (BIT < 0.1, FC321,15 < 20 %). In contrast, concentrations of long-chain n-alkanes and pollen grains do not show this stark decrease along the path of transport, and especially n-alkanes are also found in sediments in deeper waters. Proxy indicators show that marine productivity is highest close to shore and reveal that marine producers (diatoms, dinoflagellates, coccolithophores) have different spatial distributions, indicating their preferred niches. Close to the coast, where food supply is high and waters are turbid, cysts of heterotrophic dinoflagellates dominate the assemblages. The dominance of heterotrophic taxa in shelf waters in combination with the rapid decrease in the relative contribution of TerrOM towards the deeper ocean suggest that TerrOM input may trigger a priming effect that results in its rapid decomposition upon discharge. In the open ocean far away from the river plume, autotrophic dinoflagellates dominate the assemblages, indicating more oligotrophic conditions. Our combined lipid biomarker and palynology approach reveals that different types of TerrOM have distinct dispersal patterns, suggesting that the initial composition of this particulate OM influences the burial efficiency of TerrOM on the continental margin

    Physiological control on carbon isotope fractionation in marine phytoplankton

    Get PDF
    One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (Ļµp) in phytoplankton in response to changing CO2 concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO2 levels. Phytoplankton organic carbon is depleted in 13C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO2 concentrations [CO2] on Ļµp. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in Ļµp for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production / [CO2]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in Ļµp between studies, although day length was an important predictor for Ļµp in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments

    Joint inversion of proxy system models to reconstruct paleoenvironmental time series from heterogeneous data

    Get PDF
    Paleoclimatic and paleoenvironmental reconstructions are fundamentally uncertain because no proxy is a direct record of a single environmental variable of interest; all proxies are indirect and sensitive to multiple forcing factors. One productive approach to reducing proxy uncertainty is the integration of information from multiple proxy systems with complementary, overlapping sensitivity. Mostly, such analyses are conducted in an ad hoc fashion, either through qualitative comparison to assess the similarity of single-proxy reconstructions or through step-wise quantitative interpretations where one proxy is used to constrain a variable relevant to the interpretation of a second proxy. Here we propose the integration of multiple proxies via the joint inversion of proxy system and paleoenvironmental time series models in a Bayesian hierarchical framework. The ā€œJoint Proxy Inversionā€ (JPI) method provides a statistically robust approach to producing self-consistent interpretations of multi-proxy datasets, allowing full and simultaneous assessment of all proxy and model uncertainties to obtain quantitative estimates of past environmental conditions. Other benefits of the method include the ability to use independent information on climate and environmental systems to inform the interpretation of proxy data, to fully leverage information from unevenly and differently sampled proxy records, and to obtain refined estimates of proxy model parameters that are conditioned on paleo-archive data. Application of JPI to the marine Mgāˆ•Ca and Ī“18O proxy systems at two distinct timescales demonstrates many of the key properties, benefits, and sensitivities of the method, and it produces new, statistically grounded reconstructions of Neogene ocean temperature and chemistry from previously published data. We suggest that JPI is a universally applicable method that can be implemented using proxy models of wide-ranging complexity to generate more robust, quantitative understanding of past climatic and environmental change

    Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum

    Get PDF
    The Middle Eocene Climatic Optimum (around 40 million years ago) was a roughly 400,000-year-long global warming phase associated with an increase in atmospheric CO2 concentrations and deep-ocean acidification that interrupted the Eoceneā€™s long-term cooling trend. The unusually long duration, compared with early Eocene global warming phases, is puzzling as temperature-dependent silicate weathering should have provided a negative feedback, drawing down CO2 over this timescale. Here we investigate silicate weathering during this climate warming event by measuring lithium isotope ratios (reported as Ī“7Li), which are a tracer for silicate weathering processes, from a suite of open-ocean carbonate-rich sediments. We find a positive Ī“7Li excursionā€”the only one identified for a warming event so far ā€”of ~3ā€°. Box model simulations support this signal to reflect a global shift from congruent weathering, with secondary mineral dissolution, to incongruent weathering, with secondary mineral formation. We surmise that, before the climatic optimum, there was considerable soil shielding of the continents. An increase in continental volcanism initiated the warming event, but it was sustained by an increase in clay formation, which sequestered carbonate-forming cations, short-circuiting the carbonateā€“silicate cycle. Clay mineral dynamics may play an important role in the carbon cycle for climatic events occurring over intermediate (i.e., 100,000 year) timeframes
    • ā€¦
    corecore