
1.  Introduction
Climate and tectonics have modulated the flux of carbon to and from terrestrial reservoirs over geological times-
cales. Early studies predominantly focused on understanding the role of inorganic carbon, for example, carbon 
dioxide (CO2) released from solid Earth degassing versus CO2 drawdown from silicate weathering (e.g., Berner 

Abstract  The Paleocene-Eocene Thermal Maximum (PETM) was a transient global warming event and is 
recognized in the geologic record by a prolonged negative carbon isotope excursion (CIE). The onset of the CIE 
was due to a rapid influx of  13C-depleted carbon into the ocean-atmosphere system. However, the mechanisms 
required to sustain the negative CIE remains unclear. Enhanced mobilization and oxidation of petrogenic 
organic carbon (OCpetro) has been invoked to explain elevated atmospheric carbon dioxide concentrations 
after the onset of the CIE. However, existing evidence is limited to the mid-latitudes and subtropics. Here, 
we determine whether: (a) enhanced mobilization and subsequent burial of OCpetro in marine sediments was 
a global phenomenon; and (b) whether it occurred throughout the PETM. To achieve this, we utilize a lipid 
biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM-aged shallow marine 
sites (n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) 
increased within the subtropics and mid-latitudes during the PETM, consistent with evidence of higher physical 
erosion rates and intense episodic rainfall events. High-latitude sites do not exhibit drastic changes in the source 
of organic carbon during the PETM and OCpetro MARs increase slightly or remain stable, perhaps due a more 
stable hydrological regime. Crucially, we also demonstrate that OCpetro MARs remained elevated during the 
recovery phase of the PETM. Although OCpetro oxidation was likely an important positive feedback mechanism 
throughout the PETM, we show that this feedback was both spatially and temporally variable.

Plain Language Summary  The Paleocene-Eocene Thermal Maximum (PETM) was the most 
severe global warming event of the last 66 million years and was caused by the rapid release of greenhouse 
gases into the atmosphere. However, scientists have been unable to determine why the PETM lasted for 
>100,000 years. Here, we test whether CO2 released from the erosion, transport, and oxidation of ancient 
rock-derived (or petrogenic) organic carbon can explain the long duration of the PETM. We also aim to identify 
if this occurred globally and/or throughout the PETM. We achieve this by looking at biomarkers (molecular 
fossils) and use this approach to “fingerprint” the input of petrogenic organic carbon into the marine realm. 
Our results suggest enhanced transport of petrogenic organic carbon was restricted to the subtropics and 
mid-latitudes, with limited changes in the high-latitudes. We also find evidence for erosion and transport 
of petrogenic organic carbon throughout the PETM. Therefore, this process likely contributed to increasing 
atmospheric CO2 levels and may have been an important positive feedback mechanism in past and future warm 
climates.
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& Caldeira, 1997; Berner et  al., 1983; Walker et  al., 1981). However, the past two decades have highlighted 
the importance of the terrestrial organic carbon cycle as a climate feedback mechanism (Hilton & West, 2020). 
Whether it acts as a positive or negative feedback mechanism largely depends on whether the organic carbon 
(OC) is “biospheric” (OCbio), representing relatively recent thermally immature organic carbon (10 2–10 4 years 
old; e.g., vegetation and soils), or “petrogenic” (OCpetro), representing ancient rock-derived and thermally mature 
organic carbon (>10 6  years old; e.g., organic carbon-rich shales). Erosion, mobilization, and the subsequent 
burial of OCbio in marine sediments helps to sequester CO2 (Berhe et al., 2007; Stallard, 1998). In contrast, exhu-
mation and oxidation of OCpetro during lateral transport from land-to-sea can release CO2 (Petsch et al., 2000). In 
modern settings, up to ∼90% of OCpetro is oxidized in large catchments such as the Amazon and Himalayan range 
(e.g., Bouchez et al., 2010; Galy et al., 2008), whereas a lower proportion (∼10%–40%) of OCpetro is oxidized in 
mountain basins with steep rivers (e.g., Hilton et al., 2011, 2014). Crucially, regardless of individual catchment 
dynamics, OCpetro has the potential to be oxidized and increase atmospheric CO2 concentrations.

Several studies have quantified the mobilization and burial of OCpetro in modern systems (e.g., Blair et al., 2003; Clark 
et al., 2017, 2022; T. I. Eglinton et al., 2021 and references therein; Galy et al., 2007, 2015 and references therein; 
Hilton & West, 2020; Hilton et al., 2010, 2011 and references therein; Smith et al., 2013) and Holocene sediments 
(e.g., Hilton et al., 2015; Kao et al., 2008, 2014). These studies show that erosion and transport of OCpetro is largely 
controlled by a combination of geomorphic and climate processes (e.g., T. I. Eglinton et al., 2021; Hilton, 2017). For 
example, extreme rainfall events can trigger bedrock landslides (e.g., Hilton et al., 2008) and/or create deeply incised 
gullies (e.g., Leithold et al., 2006), both of which can expose OCpetro to oxidation. However, clastic sediments from 
hyperpycnal flows and turbidites can act to enhance the preservation of OCpetro (e.g., Bouchez et al., 2014; Hilton 
et al., 2011). As climate model simulations indicate an intensification  of the hydrological cycle in response to rising 
atmospheric CO2 levels and global temperatures (Lee et al., 2021), the delivery of OCpetro to the oceans will likely be 
enhanced in the future. However, such predictions are based on present-day observations and/or past climate states 
that span a lower-than-modern atmospheric CO2 values (e.g., Hilton & West, 2020; Kao et al., 2008).

The geologic record enables investigations into high CO2 states of the past, providing unique insights into how 
terrestrial carbon cycle processes may operate in the future. Many studies have focused on the Paleocene-Eocene 
Thermal Maximum (PETM; ∼56 million years ago) (McInerney & Wing, 2011), a transient carbon cycle pertur-
bation characterized by global warming (∼4–6°C; Inglis et al., 2020; Tierney et al., 2022) and an intensified 
hydrological cycle (Carmichael et al., 2017 and references therein). The PETM is identified in the geologic record 
by a negative carbon isotope excursion (CIE) (−4 ± 0.4‰; Elling et al., 2019). The onset of the PETM is on the 
order-of-millennia (Kirtland Turner, 2018; Zeebe et al., 2014) and is followed by sustained low and stable carbon 
isotope (δ 13C) values for ∼94–170 thousand years (Kyrs) (Zeebe & Lourens, 2019), referred to as the “body” 
of the CIE (Bowen et al., 2006). The body is then followed by a long recovery of ∼50–120 Kyrs (Bowen, 2013; 
Murphy et al., 2010; Zeebe et al., 2009), which is further divided into Phase I (initial rapid rise in δ 13C) and Phase 
II (final gradual rise in δ 13C) (Röhl et al., 2007).

The onset of the CIE was the result of a rapid influx of  13C-depleted carbon from one or more reservoirs outside 
the active global exogenic carbon pool (Dickens et al., 1997). Proposed reservoirs include submarine methane 
hydrates (Dickens, 2011; Dickens et al., 1995), terrestrial organic carbon (Bowen, 2013; Deconto et al., 2012; 
Kurtz et al., 2003), and volcanic carbon related to the North Atlantic Igneous Province (Gutjahr et al., 2017; 
Jones et al., 2019; Storey et al., 2007; Svensen et al., 2004). Less explored are the mechanisms responsible for the 
prolonged body of the CIE. This feature requires continual input of  13C-depleted carbon (e.g., Zeebe et al., 2009), 
thus several feedback mechanisms (either acting individually or in combination) have been proposed. This 
includes a slow dissociation of oceanic methane hydrates (Zeebe, 2013), pulsed releases of thermogenic meth-
ane from vent complexes (e.g., Frieling et al., 2016; Kirtland Turner, 2018), and/or “leaky” terrestrial organic 
carbon reservoirs (Bowen,  2013). Alternatively, recent work suggests that CO2 released from OCpetro oxida-
tion could explain the extended body of the CIE (Lyons et al., 2019). This theory is based on evidence for an 
order-of-magnitude increase in the delivery of OCpetro to the oceans, ∼10–20 Kyrs after the onset of the PETM. 
However, this study was limited to the mid-latitudes (Atlantic Coastal Plain) and subtropics (Tanzania), and 
therefore may not be globally representative. It is also unclear whether enhanced mobilization of OCpetro was a 
persistent feature throughout the PETM or whether it was restricted to the body interval.

Here, we use lipid biomarker thermal maturity ratios to fingerprint OCpetro burial in a global compilation of PETM-
aged shallow marine sites (n = 7, including five new sites). Lipid biomarkers undergo various structural alterations 
with increasing thermal maturity (e.g., defunctionalization, isomerization, catagenesis, and aromatization; Peters 
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et al., 2005) and thus, can be used to assess the proportion of OCpetro in marine sediments (Lyons et al., 2019). We 
focus on thermally immature, shallow marine sediments as they are “hotspots” for terrestrial organic carbon input 
(Bianchi et al., 2018). We quantify OCpetro burial fluxes before and during the PETM, using a two endmember 
mixing model. Overall, we aim to determine whether: (a) enhanced mobilization and subsequent burial of OCpetro 
in the ocean was a global phenomenon; and (b) whether it occurred throughout the PETM.

2.  Methods
2.1.  Data Compilation

New n-alkane- and/or hopane-based thermal maturity ratios were acquired from the following PETM-aged 
shallow marine sites: the International Ocean Drilling Program Expedition 302 Site M0004A (or the Arctic 
Coring Expedition; ACEX); the Ocean Drilling Program Site 1172 Hole D (ODP Site 1172); Kheu River; ODP 
Leg 174AX Ancora Site Hole A/B (Ancora); and the Tanzania Drilling Project Site 14 Hole A (TDP Site 14) 
(Figure 1). Additional information (e.g., paleodepth) and a brief description of the lithology for each site can be 
found within Table S1 and Text S1 in Supporting Information S1, respectively. We also compile n-alkane- and/
or hopane-based thermal maturity ratios from the following published PETM-aged shallow marine sites: TDP 
Site 14 (Carmichael et al., 2017; Handley et al., 2012); South Dover Bridge (SDB) (Lyons et al., 2019); and 
Cambridge-Dorchester Airport (CamDor) (Lyons et al., 2019) (Figure 1). Other published biomarker records are 
available for PETM-aged shallow marine sites, however these sequences are dominated by autochthonous OCpetro 
and show evidence for post-depositional diagenesis (Cui et al., 2021; Handley et al., 2011).

2.2.  Organic Geochemistry

For this study, samples from ACEX (n = 94), ODP Site 1172 (n = 41), and Ancora (n = 42) were freeze dried, 
homogenized, and extracted using a MARS5 microwave-assisted extraction system, with: (a) dichlorometh-
ane:methanol (DCM:MeOH; 1:1, v:v); (b) DCM:MeOH (9:1, v:v); and (c) DCM, at Harvard University (see 
Elling et al., 2019). Each solvent mixture was heated for 30 min to 100°C, followed by a hold time of 20 min. 
The extracts from the three steps were combined into a total lipid extract (TLE) and further divided into five frac-
tions (following Polik et al. (2018)). At the University of Southampton, extracted copper was added to the apolar 
fractions for 24 hr to remove elemental sulfur. The apolar fractions were then analyzed using a ThermoFisher 
Trace 1310 gas chromatograph (GC) coupled to a Thermo TSQ8000 Triple Quadrupole mass spectrometer (MS). 
Helium was used as the carrier gas and separation was achieved with DB-5 column (30  m  ×  0.25  mm i.d., 
0.25 μm film thickness). The GC oven program started at 70°C for 1 min, increased to 130°C at 20°C min −1, 
followed by 300°C at 4°C min −1, which was then held for 20 min. MS scanning occurred between mass-to-charge 
ratio (m/z) 50 to 650 Da, and an ionization energy of 70 eV. Compound identification was based on retention 
times, fragmentation patterns, comparison to an in-house standard, and library matches.

Figure 1.  Location of sites with new data (1–5) and published data (5–7). Paleogeographic reconstructions of 56 million 
years ago, adapted from Carmichael et al. (2017).
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Kheu River samples (n = 39) were extracted at the University of Bristol by ultrasonicating homogenized samples 
sequentially with DCM, DCM:MeOH (1:1, v:v), and MeOH. Elemental sulfur was removed from the combined 
TLE using activated copper turnings. An activated silica column with saturated ammonia in chloroform and 
chloroform:acetic acid (100:1, v:v) was used to separate the neutral and acid fraction, respectively. The apolar 
fraction was split from the neutral fraction by eluting with hexane:DCM (9:1, v:v) via separation on an alumina 
column. The apolar fractions were then analyzed at the University of Bristol on a Thermoquest Finnigan Trace 
GC interfaced with a Thermoquest Finnigan Trace MS. The GC was fitted with a fused capillary column 
(50 m × 0.32 mm i.d.) and the carrier gas was helium. The samples were suspended in ethyl acetate and injected at 
70°C. The temperature program increased to 130°C (20°C min −1), then 300°C (4°C min −1), and finally remained 
isothermal for 20 min. The MS operated with an electron ionization source at 70 eV, scanning over m/z ranges of 
50–850 Da. The compounds were integrated on the total ion chromatogram (TIC).

Additional samples (n = 12) from TDP Site 14 were homogenized and extracted at the University of Bristol. 
Extractions were achieved via Soxhlet apparatus overnight, using DCM:MeOH (2:1 v:v). The TLE was suspended 
in hexane:DCM (9:1, v:v) and separated by alumina column chromatography. Co-eluting compounds and/or unre-
solved complex mixtures were reduced with urea adduction (following Pancost et al., 2008). Elemental sulfur 
was removed using extracted copper turnings. The apolar fractions were analyzed at the University of Bristol on 
the same GC-MS as used for Kheu River. The GC was fitted with a CPsil-5CB column (Agilent Technologies, 
dimethylpolysiloxane stationary phase) and the carrier gas was helium. The samples were injected in ethyl acetate 
at 70°C. The temperature program increased to 130°C (20°C min −1), then 300°C (4°C min −1), and finally held 
for 25 min. The MS operated with an electron ionization source at 70 eV, scanning over m/z ranges of 50–850 Da. 
The compounds were integrated on the TIC or using the appropriate mass fragment (e.g., m/z 191).

2.3.  Lipid Biomarker Proxies

2.3.1.  n-Alkane-Based Thermal Maturity Ratios

Modern plants and sediments contain long-chain n-alkanes with an odd-over-even preference (G. Eglinton & 
Hamilton,  1967), however this is progressively lost during diagenesis. The shift away from a dominance of 
long-chain n-alkanes with an odd-over-even predominance is captured by the carbon preference index (CPI) 
(Bush & McInerney, 2013). Modern sediments exhibit high CPI values (>3–30), indicating relatively unaltered 
thermally immature organic matter (Diefendorf & Freimuth, 2017). In contrast, mature organic matter (e.g., coal 
and oil) exhibits low CPI values (∼1). CPI values <1 are less common, and typify low-maturity source rocks 
from carbonates or hypersaline environments. In this study, sites with extensive post-depositional diagenesis were 
excluded, such that CPI values closer to 1 likely suggests input of allochthonous thermally mature organic matter 
(e.g., OCpetro). Here, we use the equation as originally defined by Bray and Evans (1961):

CPI =
1

2

[( ∑

odd
(C25−31)

∑

even
(C26−32)

)

+

(∑

odd
(C27−33)

∑

even
(C26−32)

)]

� (1)

2.3.2.  Hopane-Based Thermal Maturity Ratios

Hopanes are the diagenetic products of biohopanoids, which are produced by a wide diversity of bacteria and 
consequently ubiquitous in a range of environments (Kusch & Rush, 2022). The ratios between different hopanes 
and their various stereoisomers have long been utilized as a thermal maturity proxy in the field of petroleum 
geochemistry (e.g., Farrimond et al., 1998; Mackenzie et al., 1980). Most of the hopane-based thermal maturity 
ratios used in this study are normalized (with the exception of Equation 4). Values indicating high thermal matu-
rity likely suggests allochthonous older material (e.g., pre-PETM-aged OCpetro), as sites with post-depositional 
diagenesis were excluded from this study. We use a multi-ratio approach as each ratio corresponds to different 
stages of maturity relative to the oil window (i.e., from early diagenesis to the generation of oil), thus enabling 
insight on the degree of thermal maturation (Figure S1 in Supporting Information S1). However, hopane distri-
butions also vary depending on the lithofacies and/or depositional environment (Peters et al., 2005). Therefore, 
without knowledge of the source rock at each locality, comparison between the sites should be undertaken with 
caution.

With the exception of Frankia spp. (Rosa-Putra et al., 2001), all bacteria synthesize hopanoids with a 17β, 21β 
configuration. However, this changes to a more stable βα and then αβ configuration during early diagenesis and 
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then peak oil generation, respectively (Farrimond et al., 1998; Mackenzie et al., 1980). The shift from ββ to αβ is 
expressed via the following equation (sometimes referred in literature as “hopanoid isomerization”):

αβ∕(αβ + ββ)� (2)

Higher thermal maturity is marked by values closer to 1. This equation is applied to the hopanes that contained 
both isomers (i.e., mostly C29-31 hopanes). However, caution should be taken when interpreting sediments with 
input from peats, as C31 αβ isomers dominate the hopane distribution within acidic wetland environments (Inglis 
et al., 2018).

The shift from βα (also referred to as moretane; M) to the more stable αβ (also referred to as hopane; H) is 
assessed via the following equation (sometimes referred in literature as “moretane/hopane ratio”):

βα∕(βα + αβ)� (3)

This equation is applied to the most commonly used C30 hopane (e.g., French et al., 2012), as well as the less 
commonly used C29 hopane (Peters et al., 2005). Values closer to ∼0 indicate higher thermal maturity and oil 
generation.

The C29 αβ hopane (also referred to as norhopane; N) is more thermally stable than C30 αβ hopane. This is 
assessed via the following equation (sometimes referred in literature as “norhopane/hopane ratio”):

C29 αβ∕C30 αβ� (4)

As well as a thermal maturity proxy, this ratio has been utilized to differentiate between anoxic carbonate and/or 
marl source rocks (>1) versus clay-rich source rocks (<1) (Peters et al., 2005).

Toward the early stages of oil generation, there is a change in stereochemistry at the C-22 position, from 
the biologically favored R configuration to a near equal mix of R and S (Farrimond et  al., 1998; Mackenzie 
et al., 1980; Peters et al., 2005). This is expressed via the following equation (sometimes referred in literature as 
“homohopane isomerization”):

S∕(S + R)� (5)

This equation uses C31-35 hopanes (also referred to as homohopanes) and approaches maximum (equilibrium) 
values of ∼0.6 as thermal maturity increases and oil is generated.

At the late stage of oil generation, C27 hopanes shift in the position of a D-ring methyl group, from C-18 
(17α(H),22,29,30-trisnorhopane; Tm) to C-17 (18α(H),22,29,30-trisnorneohopane; Ts) (Farrimond et al., 1998; 
Peters et al., 2005). This is expressed via the following equation:

Ts∕(Ts + Tm)� (6)

Tm refers to maturable (less stable), whereas Ts denotes stable. Values closer to 1 indicate higher thermal maturity, 
although the oxicity of the depositional environment also has a notable influence (Peters et al., 2005).

2.4.  Two-Endmember Mixing Model

The fraction of OCpetro (fpetro) was calculated for each hopane-based thermal maturity ratio (Xmix; Table 1), follow-
ing the two endmember mixing model from Lyons et al. (2019):

𝑋𝑋mix = 𝑓𝑓petro ×𝑋𝑋petro +
(

1 − 𝑓𝑓petro

)

×𝑋𝑋background� (7)

where Xbackground and Xpetro is the defined immature and mature endmembers, respectively. The endmembers for 
C31-35 S/(S + R) ratio follow the definitions in Lyons et al. (2019), where Xbackground is the contemporaneous carbon 
value of 0 and Xpetro is the most thermally mature value of 0.6. The endmembers for C29-30 βα/(βα + αβ) ratio also 
follow the definitions in Lyons et al. (2019), where Xbackground is 1 and Xpetro is 0. For this study, the endmembers 
of the αβ/(αβ + ββ) ratio was defined as 0 for Xbackground and 1 for Xpetro. Note that C29 αβ/C30 αβ and Ts/(Ts + Tm) 
ratios were excluded due to their strong dependence on the source rock and/or depositional environment (Peters 
et al., 2005).
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2.5.  Mass Accumulation Rates

The mass accumulation rate (MAR; in gC cm 2 Kyr −1) of OCpetro was calculated for all the new and published fpetro 
data, following Lyons et al. (2019):

MAR = LSR × 𝜌𝜌 × 𝑓𝑓petro ×
TOC

100
� (8)

where LSR is the linear sedimentation rate (cm Kyr −1), ρ is the dry bulk density (g cm −3), and TOC is the total 
organic carbon (TOC) or Corg (%) (see Table 1). As published bulk density values are only available for one 
site (ODP Site 1172), a constant ρ value of 1.8 g cm −3 was assumed across all the sites (following Dunkley 
Jones et al., 2018). However, we acknowledge that changes in dry bulk density may influence absolute MARs, 
especially in sites with major lithological changes (see Text S1 in Supporting Information S1). The TOC values 
and LSR were acquired for each location from published studies (Table 1). Corg records from ODP Site 1172 
(Papadomanolaki et al., 2022) and TDP Site 14 (Aze et al., 2014) were linearly interpolated to match the depths of 
the biomarker data, using R Package Astrochron (Meyers, 2014). LSR estimates were obtained (where possible) 
for three key time intervals: (i) pre-PETM (Paleocene); (ii) the “core” (onset and body of the CIE) of the PETM; 
(iii) and the recovery of the PETM (see Text S1 in Supporting Information S1). This was available for all the 
sites with the exception of ODP Site 1172, which lacks the recovery interval. Note that the recovery at Ancora 
and SDB were further divided into: (iiia) Phase I; and (iiib) Phase II. Kheu River does not have LSR data, thus 
estimates were taken from the nearby Aktumsuk section (Uzbekistan; John et al., 2008). Both Kheu River and 
Aktumsuk comprises shallow marine deposits that exhibits TOC values from ∼0.1% pre-PETM to a maximum of 
∼8.5% during the PETM (Bolle et al., 2000; Dickson et al., 2014). Similarly, LSRs from within the core interval 
of SDB was assumed to be the same for the entire PETM section at CamDor (following Lyons et al., 2019).

Site Xmix

LSR (cm Kyr −1)
Organic carbon 

content (%) 
referencesPre-PETM Core PETM

Recovery PETM

Phase I Phase II

ACEX a C30-31 αβ/(αβ + ββ) 1 Min: 3.8 TOC Elling 
et al. (2019)C31 S/(S + R) Max: 6.2

C30 βα/(βα + αβ)

ODP Site 1172 b C30-31 αβ/(αβ + ββ) 0.57 Min: 0.4 Not available Corg 
Papadomanolaki 
et al. (2022)

C31 S/(S + R) Max: 0.5

C30 βα/(βα + αβ)

Kheu River c C29-31 αβ/(αβ + ββ) 0.3 1.9 Corg Dickson 
et al. (2014)C29-30 βα/(βα + αβ)

Ancora d C30-31 αβ/(αβ + ββ) 0.8 11.2 and 4.3 1.3 8.4 TOC Elling 
et al. (2019)C31 S/(S + R)

C30 βα/(βα + αβ)

TDP Site 14 e C29-31 αβ/(αβ + ββ) Min: 0.5 Min: 3.5 NA Corg Aze 
et al. (2014)C31-35 S/(S + R) Max: 2 Max: 14

C29-30 βα/(βα + αβ)

SDB f C31 S/(S + R) Min: 1.03 14 21.3 21.3 TOC Lyons 
et al. (2019)C29 βα/(βα + αβ) g Max: 2.4

CamDor f C29 βα/(βα + αβ) g Min: 1.03 14 TOC Lyons 
et al. (2019)C31-32 S/(S + R) g Max: 2.4

Note. a–f References for LSR.
 aSluijs, Röhl, et al. (2008).  bSluijs et al. (2011).  cJohn et al. (2008).  dStassen et al. (2012).  eLyons et al. (2019).  fDoubrawa 
et al. (2022).  gfpetro calculated in Lyons et al. (2019).

Table 1 
Variables Used to Calculate fpetro
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3.  Results
3.1.  Thermal Maturity Ratios

3.1.1.  ACEX

The apolar fraction contains short- (C15-19), mid- (C21-25), and long- (C27-33) chain n-alkanes, and C27–C32 hopanes 
(including αβ, βα, and ββ isomers). Both the CPI (ranging from ∼1 to 3; Figure 2b) and hopane-based thermal 
maturity ratios exhibit relatively stable trends throughout the sequence, suggesting that the organic carbon source 
did not distinctly change. Note that potential information may be missing due poor core recovery between ∼388 
and 384.5 mcd (Sluijs et al., 2006). However, C30 αβ/(αβ + ββ) (Figure 2c), C31 S/(S + R) (Figure 2d), and Ts/
(Ts + Tm) (Figure 2f) values slightly increase (i.e., higher thermal maturity) between pre-PETM and the core of 
the PETM, by an average of 0.01, 0.01, and 0.08, respectively. These indices then decline during the recovery 
interval. C31 αβ/(αβ + ββ) and C30 βα/(βα + αβ) ratios (Figure 2c) exhibit the opposite trend, with lower thermal 
maturity during the core interval and the C30 βα/(βα + αβ) ratio (Figure 2e) continuing to decline into the recovery 
of the PETM.

3.1.2.  ODP Site 1172

The apolar fraction contains C16–C34 n-alkanes and the CPI has a mean value of 2.8. Samples with CPI > 3 (i.e., 
relatively low thermal maturity), are mostly constrained to the pre-PETM interval (Figure 3b). Hopanes range 
from C27 to C32 (including αβ, βα, and ββ isomers), and the thermal maturity ratios exhibit a relatively stable trend 
throughout the sequence. However, the C31 S/(S + R) ratio slightly increases by 0.09 during the core interval 
and into the recovery of the PETM (Figure 3d), suggesting potential input of thermally mature organic carbon. 
C30 αβ/(αβ + ββ) (Figure 3c), C31 αβ/(αβ + ββ) (Figure 3c), and C30 βα/(βα + αβ) (Figure 3e) values exhibit the 
opposite behavior, shifting toward relatively thermally immature values during the core of the PETM, by an 
average of 0.19, 0.22, and 0.07, respectively. During the recovery, C30 αβ/(αβ + ββ) (Figure 3c), C31 αβ/(αβ + ββ) 
(Figure 3c), and C30 βα/(βα + αβ) (Figure 3e) ratios return to relatively more thermally mature values.

Figure 2.  Thermal maturity ratios at ACEX. Note some of the axis (CPI and βα/(βα + αβ)) are reversed to reflect increasing thermal maturity toward the right. (a) bulk 
sediment δ 13C of total organic carbon (δ 13CTOC) (Elling et al., 2019), (b) CPI (this study), (c) αβ/(αβ + ββ) ratios (this study), (d) S/(S + R) ratio (this study), (e) βα/
(βα + αβ) ratio (this study), and (f) Ts/(Ts + Tm) ratio (this study). The PETM interval (including the core and recovery) is highlighted by gray shading, and a core gap is 
present from ∼388 to 384.5 mcd (Sluijs et al., 2006).
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3.1.3.  Kheu River

C16–C35 n-alkanes were identified in the apolar fraction, in addition to C27–C31 hopanes (including αβ, βα, and ββ 
isomers). Prior to the PETM and during the recovery, the CPI drops below 1 (Figure 4b), which may suggest input 
of low-maturity source rocks from carbonates or hypersaline environments. The CPI also oscillate drastically 
between ∼1 and ∼3 within the lower depths of the core of the PETM (∼0–50 cm; Figure 4b). This section of high 
variability is also reflected in the C29 αβ/C30 αβ (Figure 4d) and C29 βα/(βα + αβ) (Figure 4e) ratios, suggesting 
rapid changes in the organic carbon source. However, it may also represent greater sampling resolution within 
the PETM. Overall, the average of all the thermal maturity ratios exhibit lower thermal maturity during the core 
interval. In addition, the C29 αβ/C30 αβ ratio present values >1 during the PETM (Figure 4d), potentially indicat-
ing input from a clay-rich source rock. With the exception of Ts/(Ts + Tm) (Figure 4f), all of the ratios increase in 
higher thermal maturity during the recovery to either higher than pre-PETM (i.e., C29 αβ/(C29 αβ + C30 αβ) and 
C29-30 βα/(βα + αβ) ratios) or near pre-PETM values (i.e., C29-31 αβ/(αβ + ββ) ratio).

3.1.4.  Ancora

The apolar fraction contains C15–C34 n-alkanes and C27 to C31 hopanes (including αβ, βα, and ββ isomers). CPI ranges 
from 1 to 2.2 and is similar during the pre-PETM and PETM interval (Figure 5b). Similarly, C30-31 αβ/(αβ + ββ) 
values remain relatively constant, albeit exhibiting a very slight decline by an average of 0.01–0.03 (i.e., decreasing 
thermal maturity; Figure 5c). On the other hand, C31 S/(S + R) (Figure 5d) and C30 βα/(βα + αβ)  (Figure 5e) values 
peak toward higher thermal maturity during the core of the PETM, reaching a maximum of 0.38 and 0.04, respec-
tively. C31 S/(S + R) values exhibit a drastic shift during the PETM (Figure 5d) and there is near equal mix of 22S and 
22R isomers, suggesting potential transient input of thermally mature organic carbon. Changes in the C31 S/(S + R) 
ratio and C30 βα/(βα + αβ) ratio do not occur synchronously, instead C31 S/(S + R) values lag behind by ∼1.5 mcd.

Figure 3.  Thermal maturity ratios at ODP Site 1172. Note some of the axis (CPI and βα/(βα + αβ)) are reversed to reflect increasing thermal maturity toward the right. 
(a) bulk sediment δ 13C of total organic carbon (δ 13CTOC) (Sluijs et al., 2011), (b) CPI (this study), (c) αβ/(αβ + ββ) ratios (this study), (d) S/(S + R) ratio (this study), 
and (e) βα/(βα + αβ) ratio (this study). The PETM interval (including the core and recovery) is highlighted by gray shading.
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3.1.5.  TDP Site 14

C16–C33 n-alkanes and C27–C35 hopanes (including αβ, βα, and ββ isomers) were identified in the apolar fraction. 
The CPI remains >3 (i.e., low thermal maturity), with the exception of five data points which occur during the 
core of the PETM (Figure 6b). Most noticeable is the large variability in the hopane-based thermal maturity 
ratios pre-PETM and for the first ∼4 m of the core of the PETM. In the upper ∼5 m of the core of the PETM, 
the ratios are more stable and in general agreement. This interval mostly exhibits more thermally mature values 
than during the pre-PETM section (e.g., C31 αβ/(αβ + ββ) increases by an average of 0.5; Figure 6c), suggesting a 
potential shift to an input of thermally mature organic carbon. For example, C29-31 αβ/(αβ + ββ) values are close 
to its mature endmember of 1 (Figure 6c).

3.2.  OCpetro Mass Accumulation Rates

The OCpetro MARs were acquired from all the sites and grouped (where possible) into the key time intervals: 
(i) pre-PETM (Paleocene); (ii) the “core” (onset and body of the CIE) of the PETM; (iii) the recovery of the 
PETM; (iiia) Phase I of the recovery, and (iiib) Phase II of the recovery (see Text S1 in Supporting Informa-
tion S1). To enable comparison between sites, we calculated the fold change in mean OCpetro MARs between 
pre-PETM and during the PETM (i.e., including the core and recovery of the PETM) (Figure 7). Overall, most 
of the sites display an increase in OCpetro MARs during the PETM (ACEX: 7  ×  10 −2  gC  cm 2  Kyr −1, Kheu 
River: 3  ×  10 −2  gC  cm 2  Kyr −1, Ancora: 2  ×  10 −2  gC  cm 2  Kyr −1, SDB: 6  ×  10 −2  gC  cm 2  Kyr −1, CamDor: 
8 × 10 −3 gC cm 2 Kyr −1, TDP Site 14: and 8 × 10 −3 gC cm 2 Kyr −1). However, the sites with the largest increase are 
restricted to the mid-latitudes (i.e., Kheu River, Ancora, and SDB). In contrast, ODP Site 1172 exhibits a decrease 
(3 × 10 −4 gC cm 2 Kyr −1) in OCpetro MAR during the PETM.

Figure 4.  Thermal maturity ratios at Kheu River. Note some of the axis (CPI and βα/(βα + αβ)) are reversed to reflect increasing thermal maturity toward the right. (a) 
Bulk sediment δ 13C of organic carbon (δ 13Corg) (Dickson et al., 2014), (b) CPI (this study), (c) αβ/(αβ + ββ) ratios (this study), (d) C29 αβ/C30 αβ ratio (this study), (e) 
βα/(βα + αβ) ratios (this study), and (f) Ts/(Ts + Tm) ratio (this study). The PETM interval (including the core and recovery) is highlighted by gray shading.
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4.  Discussion
4.1.  Enhanced OCpetro Mass Accumulation Rates in the Subtropics and Mid-Latitudes During the PETM

A previous study from Tanzania (TDP Site 14) reported a relative increase in the thermally mature αβ hopanes 
during the PETM (Carmichael et al., 2017; Handley et al., 2012). Here, we present new hopane-based thermal 
maturity data that reveals rapidly fluctuating values within the first ∼4 m of the core of the PETM (Figure 6). 
Similar patterns were observed in the bulk δ 13C of organic carbon (δ 13Corg; Figure 6a), the n-alkane δ 13C record, 
the chain-length distributions of n-alkanes, and the branched and isoprenoid tetraether (BIT) index (Figure S2 in 
Supporting Information S1; Aze et al., 2014; Carmichael et al., 2017; Handley et al., 2008, 2012). The δ 13Corg 
and n-alkane δ 13C records were previously suggested to reflect episodic reworking of older (pre-PETM) material 
rather than changes in the atmospheric carbon reservoir (Aze et al., 2014; Handley et al., 2008). The hopane-based 
thermal maturity ratios within this study confirms this variable delivery of OCpetro. In contrast, the upper ∼5 m of 
the core of the PETM exhibits more stability in the hopane-based thermal maturity ratios (Carmichael et al., 2017; 
Handley et al., 2012), δ 13Corg values, and n-alkane δ 13C values (Aze et al., 2014; Handley et al., 2008), indicat-
ing a switch from an episodic to persistent delivery of OCpetro (Carmichael et al., 2017; Handley et al., 2012). 
The hopane-based thermal maturity ratios also indicate that the OCpetro within this interval is of higher thermal 
maturity. During the PETM, a rise in thermally mature hopanes and LSRs increases OCpetro MARs by an aver-
age of 8 × 10 −3 gC cm 2 Kyr −1 (Figure 7). Enhanced OCpetro MAR is consistent with a shift from predominantly 
marine organic carbon to a terrestrial organic carbon source (e.g., an increase in the abundance of long-chain 
n-alkanes produced by vascular plants and brGDGTs produced by soil bacteria; Carmichael et al., 2017; Handley 
et al., 2008, 2012). Whilst there is greater LSR and terrigenous sediment during the PETM, Corg values declined. 
This drop was attributed to the larger contribution of clay (Handley et al., 2012). Evidence includes an abundance 

Figure 5.  Thermal maturity ratios at Ancora. Note some of the axis (CPI and βα/(βα + αβ)) are reversed to reflect increasing thermal maturity toward the right. (a) 
bulk sediment δ 13C of total organic carbon (δ 13CTOC) (Elling et al., 2019), (b) CPI (this study), (c) αβ/(αβ + ββ) ratios (this study), (d) S/(S + R) ratio (this study), and 
(e) βα/(βα + αβ) ratio (this study). The PETM interval (including the core and recovery) is highlighted by gray shading.
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of kaolinite, suggestive of intensified physical erosion (John et al., 2012), and high Li/Al combined with low 
Na/Al, suggestive of exhumation of older weathered clay. These additional proxies also indicate processes that 
support an increase in the mobilization and accumulation of OCpetro during the PETM.

Similar to Tanzania, Ancora exhibits an increase in the average OCpetro MARs (by 2 × 10 −2 gC cm 2 Kyr −1) during 
the PETM. This value falls within the average OCpetro MARs estimated at two other sites from the Atlantic Coastal 
Plain (i.e., SDB: 6 × 10 −2 gC cm 2 Kyr −1 and CamDor: 8 × 10 −3 gC cm 2 Kyr −1; Figure 7). However, the higher 

Figure 6.  Thermal maturity ratios at TDP Site 14. Note some of the axis (CPI and βα/(βα + αβ)) are reversed to reflect increasing thermal maturity toward the right. 
(a) bulk sediment δ 13C of organic carbon (δ 13Corg) (Aze et al., 2014), (b) CPI (closed symbols from this study and open symbols from Handley et al. (2012)), (c) αβ/
(αβ + ββ) ratios (closed symbols from this study and open symbols from Handley et al. (2012)), (d) S/(S + R) ratios (closed symbols from this study and open symbols 
from Handley et al., 2012), (e) C29 αβ/C30 αβ ratio (Handley et al., 2012), and (f) βα/(βα + αβ) ratios (Handley et al., 2012). The PETM interval (including the core) is 
highlighted by gray shading, and an unconformity truncates the CIE at 12.6 m.

Figure 7.  Log10 fold change in mean OCpetro mass accumulation rates (MARs) between pre-PETM and during the PETM (i.e., including the core and recovery of the 
PETM). The latitudes are defined as: high (>60°N/S); mid- (30–60°N/S); and subtropics (15–30°N/S) (see Table S1 in Supporting Information S1).
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OCpetro MAR is largely driven by a shift in LSR from 0.8 cm Kyr −1 (pre-PETM) to 11.28 cm Kyr −1 (PETM) 
(Table 1; Stassen et al., 2012), and thus any uncertainty in the LSRs will also be reflected in the MAR estimates. 
The higher OCpetro MAR is consistent with evidence of terrestrial input to the Atlantic Coastal Plain during 
the PETM, including a higher abundance of kaolinite (Gibson et al., 2000), detrital magnetic minerals (Kopp 
et al., 2009), charcoal, seed pods, and terrestrial spores (Self-Trail et al., 2017). In addition, there is an increase 
in the terrestrial aquatic ratio (TAR; Bourbonniere & Meyers,  1996; Lyons et  al.,  2019). Indirect evidence 
includes changes in the marine microfossil assemblage toward benthic foraminifera (Self-Trail et al., 2017) and 
dinoflagellates (Sluijs & Brinkhuis, 2009) that can tolerate brackish water with high sediment input (Self-Trail 
et al., 2017). However, with the exception of the abrupt peaks of C31 S/(S + R) at ∼169–171 mcd (Figure 5d) 
and C30 βα/(βα + αβ) at ∼171–173 mcd (Figure 5e), the thermal maturity ratios at Ancora are relatively stable 
compared to SDB and CamDor (Lyons et al., 2019). Unlike Ancora, SDB and CamDor are characterized by a 
6‰ increase in δ 13Corg values during the PETM (Lyons et al., 2019), which was argued to represent reworking of 
older (pre-PETM) material and not an increase in primary production (Lyons et al., 2019). This  13C enrichment is 
not observed at Ancora (Figure 5a; Elling et al., 2019) and is consistent with the relatively stable thermal maturity 
ratios during the PETM.

The average OCpetro MARs at Kheu River exhibits an increase (by 3 × 10 −2 gC cm 2 Kyr −1) during the PETM 
(Figure 7), driven by an order-of-magnitude rise in Corg values from an average background level of ∼0.1 wt. % (pre- 
and post-PETM) to ∼4.4 wt. % (Dickson et al., 2014). However, in contrast to the sites discussed thus far, ther-
mal maturity ratios at Kheu River shift to immature values during the core of the PETM (Figure 4). During the 
PETM, the n-alkane distribution is dominated by long-chain homologs characteristic of vascular plants (Dickson 
et al., 2014). It can therefore be argued that the shift observed in the thermal maturity ratios is mostly due to 
enhanced input of the OCbio (i.e., immature hopanes such as ββ isomers) transported from land, although in situ 
production cannot be dismissed. An increase in the Chemical Index of Alteration (CIA) and spike in Ti/Al during 
the PETM not only corroborates evidence for terrestrial input but possibly erosion of older (pre-PETM) material 
(Dickson et al., 2014). As such, both OCpetro and (to a larger extent) OCbio were likely delivered to this site. OCbio 
burial may negate CO2 released via enhanced OCpetro oxidation (e.g., Bowen & Zachos, 2010; John et al., 2008; 
Kaya et al., 2022; Papadomanolaki et al., 2022; Sluijs, Röhl, et al., 2008). Therefore, understanding whether the 
Kheu River region was a net carbon source or sink requires further investigations, and this study highlights the 
need to quantify both OCbio and OCpetro in marine sediments. Regardless, the subtropical and mid-latitude sites 
all exhibit an increase in OCpetro MAR during the PETM, and thus suggest that OCpetro oxidation may provide an 
additional source of CO2.

4.2.  Limited Change in Organic Carbon Sources in the High-Latitudes During the PETM

In the subtropics and mid-latitudes, average OCpetro MAR increased between 8 × 10 −3 and 6 × 10 −2 gC cm 2 Kyr −1 
during the PETM for a given site (see Section 4.1). In the high-latitudes, OCpetro MARs in the Arctic (ACEX) 
and the southwest Pacific Ocean (ODP Site 1172) either increase (by 7 × 10 −2 gC cm 2 Kyr −1) or decrease (by 
3 × 10 −4 gC cm 2 Kyr −1), respectively (Figure 7). The decline observed at ODP Site 1172 is due to a small drop 
in Corg values and LSRs. The marked rise at ACEX is mostly driven by a peak in TOC values, from a minimum 
of 1.3% (pre-PETM) to a maximum of 4.9% (core PETM) (Elling et al., 2019). Absolute abundances of paly-
nomorphs from ACEX suggest that TOC is a mixture of marine and terrestrial organic matter (Sluijs, Röhl, 
et al., 2008). However, both sites, with the exception of the C31 S/(S + R) ratio at ODP Site 1172 (Figure 3d), 
have stable thermal maturity ratios throughout the record. This indicates that although the supply of organic 
carbon increased during the PETM, the organic carbon source did not distinctly change. Intriguingly, there is an 
antiphase relationship between C30 αβ/(αβ + ββ) and C31 αβ/(αβ + ββ) at ACEX (Figure 2c), perhaps suggesting 
subtle changes in the organic carbon source during the PETM. Decoupling between the C30 and C31 indices could 
be due to a greater input of acidic peats, which are dominated by C31 αβ hopanes but lack abundant C30 αβ isomers 
(Inglis et al., 2018). The contribution of OCbio from acidic peats at ACEX has also been inferred from brGDGTs 
(Sluijs et al., 2020).

4.3.  Climate Exerts Primary Control on OCpetro Mobilization During the PETM

Various factors may explain why some shallow marine sediments are characterized by enhanced delivery of 
OCpetro during the PETM. Modern observations have identified a strong link between rainfall and efficient 
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erosion/transfer of organic carbon from land-to-sea (e.g., T. I. Eglinton et al., 2021; Hilton, 2017). In the subtrop-
ics, evidence for changes in the hydrological cycle during the PETM are scarce. Previous work at TDP Site 14 
revealed that the hydrogen isotope of n-alkanes (δ 2Hn-alkanes) increased during the PETM, which was inferred to 
represent a shift toward more arid climate conditions (Carmichael et al., 2017; Handley et al., 2008). Enhanced 
aridity could lead to minimal vegetation cover, hindering soil development, and maximizing the potential for 
erosion and mobilization of OCpetro (e.g., Hilton et al., 2008; Leithold et al., 2006). Furthermore, there are large 
fluctuations in δ 2Hn-alkanes values, which may indicate oscillations between dry and wet climate states and/or an 
increase in extreme precipitation events (Carmichael et al., 2017; Handley et al., 2008). Modeling studies over 
subtropical Africa during the PETM support the latter (Carmichael et al., 2018). Episodic and intense rainfall 
on a landscape prone to erosion would explain the highly variable delivery of different organic carbon sources, 
as shown by the hopane-based thermal maturity data (this study), δ 13Corg values, and n-alkane δ 13C values (Aze 
et al., 2014; Handley et al., 2008).

Analogous to TDP Site 14, Kheu River also exhibits high variability in the thermal maturity ratios (e.g., CPI, 
C29 αβ/C30 αβ, and C29 βα/(βα + αβ); Figure 4), chain-length distributions of n-alkanes, BIT index, grain-size, 
and CIA during the PETM (Dickson et al., 2014). Although two brief intervals of marine transgression have 
been noted in this region (Shcherbinina et al., 2016), the biomarker records are more variable and thus appear 
to be more consistent with episodic changes in precipitation. There are multiple lines of evidences associating 
other mid-latitude sites with increased transient and extreme rainfall events during the PETM. For example, the 
deposition of conglomerates in the Pyrenees (Chen et  al.,  2018; Schmitz & Pujalte, 2003, 2007), changes in 
paleosol weathering indices, and the abundance and composition of nodules in the Bighorn Basin (e.g., Kraus 
& Riggins, 2007; Kraus et al., 2013). There is also evidence for greater freshwater runoff in the Atlantic Coastal 
Plain (i.e., Ancora, SDB, and CamDor) during the PETM, with the development of a river-dominated shelf 
referred to as the “Appalachian Amazon” (Doubrawa et al., 2022; Kopp et al., 2009; Self-Trail et al., 2017). This 
is consistent with high-resolution climate models that suggest the western Atlantic region was dominated by an 
increase in extratropical cyclones and more extreme rainfall events (Kiehl et al., 2021; Rush et al., 2021; Shields 
et al., 2021). Although the hydrological cycle likely exerted a first-order control on the mobilization of terrestrial 
organic carbon, other ecological and/or geologic controls could have also been important. For example, the domi-
nance of OCbio at Kheu River may reflect abundant vegetation cover (e.g., Goñi et al., 2013). On the other hand, 
the dominance of OCpetro at TDP Site 14 may reflect greater availability of OCpetro-rich rock and/or exacerbated 
erosion of OCpetro caused by limited soil and vegetation (e.g., Hilton et al., 2011).

Model simulations indicate an increase in precipitation in the high-latitudes for a PETM-type warming event 
(e.g., Carmichael et al., 2016; Cramwinckel et al., 2023; Winguth et al., 2010). Proxies also reconstruct northern 
and southern high-latitudes to be wetter at the onset of the PETM (e.g., evidence from palynomorphs (Korasidis 
et al., 2022; Sluijs et al., 2006; Willard et al., 2019), fossilized plants (Harding et al., 2011), the hydrogen isotopic 
composition of n-alkanes (δ 2Hn-alkanes; Pagani et  al.,  2006), and clay-mineralogy (Dypvik et  al.,  2011; Kaiho 
et al., 1996; Robert & Kennett, 1994)). Yet, biomarker evidence from high-latitude sites (i.e., ACEX and ODP 
Site 1172) indicates limited changes in the source of organic carbon during the PETM. This suggests that in 
order to exhume and mobilize OCpetro, changes in rainfall seasonality and frequency of extreme precipitation 
events may be required (see Section 4.1). Alternatively, there may be other feedback mechanisms and/or more 
regional controls beyond the hydrological cycle. In modern systems, local geomorphic processes play a strong 
role in regulating OCpetro transport from land-to-sea (e.g., Hilton & West, 2020). Variability in OCpetro MARs 
could also be attributed to changes in sea level during the PETM. Indeed, various studies have suggested marine 
transgression during the PETM, including: ACEX (Sluijs et al., 2006); ODP Site 1172 (Sluijs et al., 2011); Kheu 
River (Shcherbinina et al., 2016); the Atlantic Coastal Plain (John et al., 2008); and elsewhere (Jiang et al., 2023; 
Li et al., 2020 and references therein; Sluijs, Brinkhuis, et al., 2008 and references therein). However, although 
sea level rise is expected to reduce the supply of terrestrial organic carbon into the marine realm, this is rarely 
observed (e.g., Sluijs et  al.,  2014) and most PETM sites are characterized by enhanced terrigenous material 
during the PETM (Carmichael et al., 2017 and references therein).

4.4.  Timing and Implications for CO2 Release During the PETM

Enhanced OCpetro delivery was suggested to have occurred ∼10–20 Kyrs after the onset of the PETM (i.e., within 
the body of the CIE) by Lyons et al. (2019). Here, we confirm that elevated OCpetro MARs occurred within the 
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core of the PETM at several other sites (i.e., ACEX, Kheu River, Ancora; Figure 8). However, the exact timing 
within the core (i.e., onset or body) cannot be determined due to the lack of robust age constraints. The sites where 
the recovery phases were defined (i.e., ACEX, Kheu River, Ancora, and SDB), enables insight into whether 
enhanced OCpetro MARs continued after the core interval or recovered to pre-PETM values. Interestingly, at both 
Ancora and SDB, median OCpetro MARs are higher than the core of the PETM in Phase II and I, respectively 
(Figure 8). There is a decrease in OCpetro MAR during Phase I of the recovery at Ancora, however this inter-
val consists of a single data point. Although an increase in OCpetro MAR during the recovery is not observed 
at ACEX and Kheu River, values do not return to pre-PETM levels. This suggests that at certain localities, 
terrestrial organic carbon cycle perturbations continued into the recovery phase. If OCpetro was oxidized, it may 
have provided an additional source of CO2 during the recovery. In this scenario, other negative feedback mecha-
nisms are required to negate the additional carbon released and help assist in the recovery of the PETM. Several 
processes have been proposed, such as silicate weathering (Penman et al., 2014) and/or enhanced OCbio burial, 
either on land (Bowen, 2013; Bowen & Zachos, 2010) or within the ocean (John et al., 2008; Ma et al., 2014). 
For example, exacerbated weathering and erosion during the PETM (Pogge von Strandmann et al., 2021) may 
increase nutrient delivery from land-to-sea, stimulating primary productivity and therefore OCbio burial (Kaya 
et al., 2022; Papadomanolaki et al., 2022). However, the source of sequestered organic carbon in ocean sediments 
(i.e., terrestrial vs. marine) remains a major source of uncertainty.

Overall, Lyons et al. (2019) inferred between 10 2 and 10 4 PgC was released as CO2 globally due to oxidation 
of OCpetro during the PETM. This assumed that the three sites (i.e., SDB, CamDor, and TDP Site 14) are glob-
ally representative. However, this study demonstrates that enhanced OCpetro MARs was mostly restricted to the 
subtropics and mid-latitudes, suggesting that global estimates may be lower than previously inferred. In addi-
tion, the maximum value of 10 4 PgC assumed that 85% of OCpetro was oxidized. However, increased erosion of 
clastic sediments can aid the preservation of OCpetro (e.g., Bouchez et al., 2014; Burdige, 2007). Furthermore, 
intense precipitation events (characteristic of the subtropics and mid-latitudes; e.g., Carmichael et  al.,  2017; 

Figure 8.  Violin plots of OCpetro MARs (gC cm 2 Kyr −1) for the defined time intervals of sites with the recovery phase (a) 
ACEX, (b) Kheu River, (c) Ancora, and (d) SDB. The thick dashed line represents the median and the thin dashed line 
extends from the 25th to 75th percentiles. Note the discontinuous y-axis and two different scales of (b) Kheu River.
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Handley et al., 2008; Kiehl et al., 2021; Kraus & Riggins, 2007; Kraus et al., 2013; Rush et al., 2021; Schmitz 
& Pujalte, 2003, 2007; Shields et al., 2021) may reduce the transfer time of OCpetro from source to sink, thereby 
reducing the possibility for oxidation (e.g., Hilton et al., 2011). However, it is important to consider that shallow 
marine sites will likely integrate an expansive catchment area, which incorporate slow meandering rivers as well 
as steep mountainous rivers. In the former system, the extent of OCpetro oxidized could be as high as ∼90% (e.g., 
Bouchez et al., 2010; Galy et al., 2008). This is especially likely at sites where large freshwater input was evident, 
such as the Atlantic Coastal Plain (Doubrawa et al., 2022; Kopp et al., 2009; Self-Trail et al., 2017). We also 
demonstrate that CO2 release may have continued into the recovery of the PETM, suggesting that other feedback 
mechanisms (e.g., OCbio burial) were necessary to aid in the recovery of the Earth's climate system. To constrain 
global estimates of CO2 emitted from OCpetro oxidation, future work is required to elucidate these uncertainties. 
For example, Raman spectroscopy could help identify the oxidation efficiency based on the degree of highly 
degradable versus recalcitrant organic carbon (Sparkes et al., 2018), whilst paleo-digital elevation models may 
provide further insight on sediment routing systems and transit time during the PETM (Lyster et al., 2020).

5.  Conclusion
This study uses a multi-biomarker approach to reconstruct the mobilization of petrogenic organic carbon (OCpetro) 
during the PETM. We find widespread evidence for enhanced OCpetro mass accumulation rates (MARs) in the 
subtropics and mid-latitudes during the PETM. In this region, we argue that extreme rainfall events exacerbated 
erosion, mobilization, and burial of OCpetro in the marine realm. In addition, we demonstrate that high OCpetro 
MARs persisted into the recovery phase of the PETM. However, the high-latitude sites do not exhibit a distinct 
change in the source of organic carbon during the PETM. This may be due to a more stable hydrological regime 
and/or additional controls, such as geomorphic processes or sea level change. Overall, OCpetro oxidation likely 
acted as an additional source of CO2 during the PETM. However, further work is needed to determine the exact 
contributions of OCpetro as a positive feedback mechanism during the PETM and other transient warming events.
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