35 research outputs found

    Short-term outcome of 1,465 computer-navigated primary total knee replacements 2005–2008: A report from the Norwegian Arthroplasty Register

    Get PDF
    Background and purpose: Improvement of positioning and alignment by the use of computer-assisted surgery (CAS) might improve longevity and function in total knee replacements, but there is little evidence. In this study, we evaluated the short-term results of computer-navigated knee replacements based on data from the Norwegian Arthroplasty Register. Patients and methods: Primary total knee replacements without patella resurfacing, reported to the Norwegian Arthroplasty Register during the years 2005–2008, were evaluated. The 5 most common implants and the 3 most common navigation systems were selected. Cemented, uncemented, and hybrid knees were included. With the risk of revision for any cause as the primary endpoint and intraoperative complications and operating time as secondary outcomes, 1,465 computer-navigated knee replacements (CAS) and 8,214 conventionally operated knee replacements (CON) were compared. Kaplan-Meier survival analysis and Cox regression analysis with adjustment for age, sex, prosthesis brand, fixation method, previous knee surgery, preoperative diagnosis, and ASA category were used. Results: Kaplan-Meier estimated survival at 2 years was 98% (95% CI: 97.5–98.3) in the CON group and 96% (95% CI: 95.0– 97.8) in the CAS group. The adjusted Cox regression analysis showed a higher risk of revision in the CAS group (RR = 1.7, 95% CI: 1.1–2.5; p = 0.02). The LCS Complete knee had a higher risk of revision with CAS than with CON (RR = 2.1, 95% CI: 1.3–3.4; p = 0.004)). The differences were not statistically significant for the other prosthesis brands. Mean operating time was 15 min longer in the CAS group. Interpretation: With the introduction of computer-navigated knee replacement surgery in Norway, the short-term risk of revision has increased for computer-navigated replacement with the LCS Complete. The mechanisms of failure of these implantations should be explored in greater depth, and in this study we have not been able to draw conclusions regarding causation

    Patient-Reported Outcomes in Foot and Ankle Orthopedics

    No full text

    Relationship between cutting errors and learning curve in computer-assisted total knee replacement

    No full text
    Computer-assisted total knee replacement (TKR) has been shown to improve radiographic alignment. Continuous feedback from the navigation system allows accurate adjustment of the bone cuts, thus reducing errors. The aim of this study was to determine the impact of experience both with computer navigation and knee replacement surgery on the frequency of errors in intraoperative bone cuts and implant alignment. Three homogeneous patient groups undergoing computer assisted TKR were included in the study. Each group was treated by one of three surgeons with varying experience in computer-aided and knee replacement surgery. Surgeon A had extensive experience in knee replacement and computer-assisted surgery. Surgeon B was an experienced knee replacement surgeon. A general orthopaedic surgeon with limited knee replacement surgery experience performed all surgeries in group C. The cutting errors and the number of re-cuts were determined intraoperatively. The complications and mean surgical time were collected for each group. The postoperative frontal femoral component angle, frontal tibial component angle, hip–knee–ankle angle and component slopes were evaluated. The results showed that the number of cutting errors were lowest for TKR performed by the surgeon with experience in navigation. This difference was statistically significant when compared to the general orthopaedic surgeon. A statistically significant superior result was achieved in final mechanical axis alignment for the surgeon experienced in computer-guided surgery compared to the other two groups (179.3° compared to 178.9° and 178.1°). However, the total number of outliers was similar, with no statistically significant differences among the three surgeons. Experience with navigation significantly reduced the surgical time

    Vascular Decompression of a Vertebral Artery Loop Producing Cervical Radiculopathy

    No full text
    Vertebral artery tortuosity and loop formation are rare causes of cervical radiculopathy. The authors present the case of a 70-year-old man with 9 years of progressive right-sided cervical and scapular pain but no history of trauma. Computerized tomography myelography and magnetic resonance imaging revealed an ovoid mass in the right C3-4 intervertebral foramen. The patient underwent a right C-3 and C-4 hemilaminectomy and a complete C3-4 facetectomy. A pulsatile vascular structure was found compressing the right C-4 nerve root. The bone overlying the vascular structure was removed, producing decompression of the nerve root. Immediate postoperative angiography showed that this lesion was a focal vertebral artery loop. The patient\u27s symptoms resolved after surgery, supporting the use of vascular decompression of a cervical nerve root compressed by a vertebral artery loop for the relief of radicular symptoms
    corecore