2,548 research outputs found

    Studies of a Terawatt X-Ray Free-Electron Laser

    Get PDF
    The possibility of constructing terawatt (TW) x-ray free-electron lasers (FELs) has been discussed using novel superconducting helical undulators [5]. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation code [7]. Steady-state simulations have been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice. The importance of extreme focusing of the electron beam in the production of TW power levels means that the undulator is not the prime driver for a TW FEL, and simulations are also described using planar undulators that reach near-TW power levels. In addition, TW power levels can be reached using pure self-amplified spontaneous emission (SASE) or with novel self-seeding configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure

    Using ultra-short pulses to determine particle size and density distributions

    Get PDF
    We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was found to be strongly dependent on the average particle size, particle size distribution, and the packing fraction. We also show that the intensity as a function of time-delay can be used to analyze the particle size distribution and packing fraction of an optically thick sample independently of the presence of absorption features. Finally, we propose an all new way to measure the shape of ultra-short pulses that have propagated through a SSM.Comment: 15 pages, 29 figures, accepted for publication in Optics Express will update with full reference when it is availabl

    Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides

    Get PDF
    We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si3_3N4_4 waveguides with a standard core cross section of 4.4×\times0.03 μ\mum2^2 size, buried 8 μ\mum deep in a SiO2_2 cladding we compare surface acoustic wave generation in various different geometries via a piezo-active, lead zirconate titanate film placed on top of the surface and driven via an interdigitized transducer (IDT). Using numerical solutions of the acoustic and optical wave equations, we determine the strain distribution of the SAW under resonant excitation. From the overlap of the acoustic strain field with the optical mode field we calculate and maximize the attainable amplitude of index modulation in the waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum shift in relative effective refractive index of 0.7x103^{-3} was obtained for TE polarized light, using an IDT period of 30 - 35 μ\mum, a film thickness of 2.5 - 3.5 μ\mum, and an IDT voltage of 10 V. For these parameters, the resonant frequency is in the range 70 - 85 MHz. The maximum shift increases to 1.2x103^{-3}, with a corresponding resonant frequency of 87 MHz, when the height of the cladding above the core is reduced to 3 μ\mum. The relative index change is about 300-times higher than in previous work based on non-resonant proximity piezo-actuation, and the modulation frequency is about 200-times higher. Exploiting the maximum relative index change of 1.2×\times103^{-3} in a low-loss balanced Mach-Zehnder modulator should allow full-contrast modulation in devices as short as 120 μ\mum (half-wave voltage length product = 0.24 Vcm).Comment: 19 pages, 8 figure

    Controlled Nanoparticle Formation by Diffusion Limited Coalescence

    Get PDF
    Polymeric nanoparticles (NPs) have a great application potential in science and technology. Their functionality strongly depends on their size. We present a theory for the size of NPs formed by precipitation of polymers into a bad solvent in the presence of a stabilizing surfactant. The analytical theory is based upon diffusion-limited coalescence kinetics of the polymers. Two relevant time scales, a mixing and a coalescence time, are identified and their ratio is shown to determine the final NP diameter. The size is found to scale in a universal manner and is predominantly sensitive to the mixing time and the polymer concentration if the surfactant concentration is sufficiently high. The model predictions are in good agreement with experimental data. Hence the theory provides a solid framework for tailoring nanoparticles with a priori determined size.Comment: 4 pages, 3 figure

    Boundary effect on CDW: Friedel oscillations, STM image

    Full text link
    We study the effect of open boundary condition on charge density waves (CDW). The electron density oscillates rapidly close to the boundary, and additional non-oscillating terms (~ln(r)) appear. The Friedel oscillations survive beyond the CDW coherence length (v_F/Delta), but their amplitude gets heavily suppressed. The scanning tunneling microscopy image (STM) of CDW shows clear features of the boundary. The local tunneling conductance becomes asymmetric with respect to the Fermi energy, and considerable amount of spectral weight is transferred to the lower gap edge. Also it exhibits additional zeros reflecting the influence of the boundary.Comment: 7 pages, 6 figure

    Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized Kagome lattice

    Full text link
    Quantum simulators are an essential tool for understanding complex quantum materials. Platforms based on ultracold atoms in optical lattices and photonic devices led the field so far, but electronic quantum simulators are proving to be equally relevant. Simulating topological states of matter is one of the holy grails in the field. Here, we experimentally realize a higher-order electronic topological insulator (HOTI). Specifically, we create a dimerized Kagome lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface using a scanning tunneling microscope (STM). We engineer alternating weak and strong bonds to show that a topological state emerges at the corner of the non-trivial configuration, while it is absent in the trivial one. Contrarily to conventional topological insulators (TIs), the topological state has two dimensions less than the bulk, denoting a HOTI. The corner mode is protected by a generalized chiral symmetry, which leads to a particular robustness against perturbations. Our versatile approach to quantum simulation with artificial lattices holds promises of revealing unexpected quantum phases of matter

    One-dimensional conduction in Charge-Density Wave nanowires

    Full text link
    We report a systematic study of the transport properties of coupled one-dimensional metallic chains as a function of the number of parallel chains. When the number of parallel chains is less than 2000, the transport properties show power-law behavior on temperature and voltage, characteristic for one-dimensional systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    A gain-coefficient switched Alexandrite laser

    Get PDF
    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.Comment: 8 pages, 5 figure

    Cluster size dependence of high-order harmonic generation

    Get PDF
    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303 K and 363 K). For the firrst time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 10 for very small average cluster size (~200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighbouring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (~200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure
    corecore