3 research outputs found

    Novel multicomponent organic-inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering

    Get PDF
    The present work focuses on the development of novel multicomponent organic‐inorganic hydrogel composites for bone tissue engineering. For the first time, combination of the organic components commonly used in food industry, namely whey protein isolate (WPI) and gelatin from bovine skin, as well as inorganic material commonly used as a major component of hydraulic bone cements, namely α‐TCP in various concentrations (0‐70 wt.%) was proposed. The results showed that α‐TCP underwent incomplete transformation to calcium‐deficient hydroxyapatite (CDHA) during preparation process of the hydrogels. Microcomputer tomography showed inhomogeneous distribution of the calcium phosphate (CaP) phase in the resulting composites. Nevertheless, hydrogels containing 30‐70 wt.% α‐TCP showed significantly improved mechanical properties. The values of Young's modulus and the stresses corresponding to compression of a sample by 50% increased almost linearly with increasing concentration of ceramic phase. Incomplete transformation of α‐TCP to CDHA during preparation process of composites provides them high reactivity in simulated body fluid during 14‐day incubation. Preliminary in vitro studies revealed that the WPI/gelatin/CaP composite hydrogels support the adhesion, spreading, and proliferation of human osteoblast‐like MG‐63 cells. The WPI/gelatin/CaP composite hydrogels obtained in this work showed great potential for the use in bone tissue engineering and regenerative medicine applications

    In vivo application of foam titanium implants with magnesium-doped octacalcium phosphate and hydroxyapatite thin films deposited by PLD method

    No full text
    Results of investigations into integration of foam titanium implants (FTI), with rabbit bone are presented. Three groups of implants were examined: clean titanium implants produced by selective laser melting, FTI coated with a thin film of octacalcium phosphate (OCP), doped with 0.6 weight percent of Mg, deposited by pulsed laser deposition (PLD), and FTI with hydroxyapatite (HA) doped with 0.6 wt.% of Mg. Analysis of histopathology of implants' integration with bone were performed by staining using the triple chromatographic method of Masson - Goldner, pla- nimetric analysis using the Kruskal - Wallis test, an ANOVA test and microtomography. The best results were obtained for implants coated with HA, followed by those coated with OCP. Implants from these two groups showed superior integration with bone than uncoated titanium implants
    corecore