141 research outputs found

    Replication of viral RNA. 13. The early product of phage RNA synthesis in vitro.

    Full text link

    Judging enzyme-responsive micelles by their covers : direct comparison of dendritic amphiphiles with different hydrophilic blocks

    Get PDF
    Enzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles. In this work, we report a systematic head-to-head comparison of well-defined polymeric micelles with different polymeric shells and two types of enzymatically degradable hydrophobic cores. To carry out this direct comparison, we developed a highly modular approach for preparing clickable, spectrally active enzyme-responsive dendrons with adjustable degree of hydrophobicity. The dendrons were linked with three different widely used hydrophilic polymers-poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the CuAAC click reaction. The high modularity and molecular precision of the synthetic methodology enabled us to easily prepare well-defined amphiphiles that differ either in their hydrophilic block composition or in their hydrophobic dendron. The micelles of the different amphiphiles were thoroughly characterized and their sizes, critical micelle concentrations, drug loading, stability, and cell internalization were compared. We found that the micelle diameter was almost solely dependent on the hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic degradation rate was strongly dependent on the composition of both blocks. Drug encapsulation capacity was very sensitive to the type of the hydrophilic block, indicating that, in addition to the hydrophobic core, the micellar shell also has a significant role in drug encapsulation. Incubation of the spectrally active micelles in the presence of cells showed that the hydrophilic shell significantly affects the micellar stability, localization, cell internalization kinetics, and the cargo release mechanism. Overall, the high molecular precision and the ability of these amphiphiles to report their disassembly, even in complex biological media, allowed us to directly compare the different types of micelles, providing striking insights into how the composition of the micelle shells and cores can affect their properties and potential to serve as nanocarriers

    Reaching the Tumor:Mobility of Polymeric Micelles Inside an In Vitro Tumor-on-a-Chip Model with Dual ECM

    Get PDF
    Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow “high-throughput” screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations’ capacity to cross the tumor tissue barrier.</p

    Prevention of delirium (POD) for older people in hospital: study protocol for a randomised controlled feasibility trial

    Get PDF
    Background: Delirium is the most frequent complication among older people following hospitalisation. Delirium may be prevented in about one-third of patients using a multicomponent intervention. However, in the United Kingdom, the National Health Service has no routine delirium prevention care systems. We have developed the Prevention of Delirium Programme, a multicomponent delirium prevention intervention and implementation process. We have successfully carried out a pilot study to test the feasibility and acceptability of implementation of the programme. We are now undertaking preliminary testing of the programme. Methods/Design: The Prevention of Delirium Study is a multicentre, cluster randomised feasibility study designed to explore the potential effectiveness and cost-effectiveness of the Prevention of Delirium Programme. Sixteen elderly care medicine and orthopaedic/trauma wards in eight National Health Service acute hospitals will be randomised to receive the Prevention of Delirium Programme or usual care. Patients will be eligible for the trial if they have been admitted to a participating ward and are aged 65 years or over. The primary objectives of the study are to provide a preliminary estimate of the effectiveness of the Prevention of Delirium Programme as measured by the incidence of new onset delirium, assess the variability of the incidence of new-onset delirium, estimate the intracluster correlation coefficient and likely cluster size, assess barriers to the delivery of the Prevention of Delirium Programme system of care, assess compliance with the Prevention of Delirium Programme system of care, estimate recruitment and follow-up rates, assess the degree of contamination due to between-ward staff movements, and investigate differences in financial costs and benefits between the Prevention of Delirium Programme system of care and standard practice. Secondary objectives are to investigate differences in the number, severity and length of delirium episodes (including persistent delirium); length of stay in hospital; inhospital mortality; destination at discharge; health-related quality of life and health resource use; physical and social independence; anxiety and depression; and patient experience. Discussion: This feasibility study will be used to gather data to inform the design of a future definitive randomised controlled trial. Trial registration: ISRCTN01187372. Registered 13 March 2014

    Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair

    Get PDF
    UV-sensitive syndrome (UVSS) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma1, 2, 3, 4. Despite mild clinical features, cells from individuals with UVSS, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER)2, 4, 5, which removes DNA damage in actively transcribed genes6. Three of the seven known UVSS cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively)7, 8. The remaining four individuals with UVSS, one of whom is described for the first time here, formed a separate UVSS-A complementation group1, 9, 10; however, the responsible gene was unknown. Using exome sequencing11, we determine that mutations in the UVSSA gene (formerly known as KIAA1530) cause UVSS-A. The UVSSA protein interacts with TC-NER machinery and stabilizes the ERCC6 complex; it also facilitates ubiquitination of RNA polymerase IIo stalled at DNA damage sites. Our findings provide mechanistic insights into the processing of stalled RNA polymerase and explain the different clinical features across these TC-NER–deficient disorders

    Predictors for postoperative delirium after vascular surgery

    No full text

    The wave called delirium, from onset to consequences

    Get PDF
    A major part of delirium research in elderly patients has been in heterogeneous populations. Patients develop delirium in the presence of an underlying medical condition which is the reason for hospital admission, which hinders baseline assessment of predisposing factors. In contrast, the research in this thesis was done in a homogeneous group with baseline data available, as well as longitudinal and follow-up data on several factors. The general aim of this thesis was threefold. We wanted to increase our knowledge on several aspects of delirium: predisposing and precipitating factors (anesthetic technique, surgery), phenomenology and symptoms throughout the delirium episode (motor subtyping), and conclude with the (long-term) outcomes of delirium (cognitive and affective functioning)
    • …
    corecore