619 research outputs found

    Optical far-infrared properties of graphene monolayer and multilayers

    Full text link
    We analyze the features of the graphene mono- and multilayer reflectance in the far-infrared region as a function of frequency, temperature, and carrier density taking the intraband conductance and the interband electron absorbtion into account. The dispersion of plasmon mode of the multilayers is calculated using Maxwell's equations with the influence of retardation included. At low temperatures and high electron densities, the reflectance of multilayers as a function of frequency has the sharp downfall and the subsequent deep well due to the threshold of electron interband absorbtion.Comment: 9 pages, 4 figure

    Current-induced spin-wave excitations in a single ferromagnetic layer

    Full text link
    A new current induced spin-torque transfer effect has been observed in a single ferromagnetic layer without resorting to multilayers. At a specific current density of one polarity injected from a point contact, abrupt resistance changes due to current-induced spin wave excitations have been observed. The critical current at the onset of spin-wave excitations depends linearly on the external field applied perpendicular to the layer. The observed effect is due to current-driven heterogeneity in an otherwise uniform ferromagnetic layer.Comment: 12 pages, 4 figure

    Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy

    Full text link
    This paper reports the solution of the equation of motion for a domain wall in a magnetic material which exhibits high magneto-crystalline anisotropy. Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion, we solve the equation to give an analytical expression, which specifies the domain wall position as a function of time. Taking parameters from a Co/Pt multilayer system, we find good quantitative agreement between calculated and experimentally determined wall velocities, and show that high field uniform wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure

    Thin-Film Trilayer Manganate Junctions

    Full text link
    Spin-dependent conductance across a manganate-barrier-manganate junction has recently been demonstrated. The junction is a La0.67_{0.67}Sr0.33_{0.33}MnO3_3% -SrTiO3_3-La0.67_{0.67} Sr0.33_{0.33}MnO3_3 trilayer device supporting current-perpendicular transport. Large magnetoresistance of up to a factor of five change was observed in these junctions at 4.2K in a relatively low field of the order of 100 Oe. Temperature and bias dependent studies revealed a complex junction interface structure whose materials physics has yet to be understood.Comment: 20 pages, 14 figures. To appear in Phil. Trans. R. Soc. Lond. A vol.356 (1998

    Rotating vortex dipoles in ferromagnets

    Full text link
    Vortex-antivortex pairs are localized excitations and have been found to be spontaneously created in magnetic elements. In the case that the vortex and the antivortex have opposite polarities the pair has a nonzero topological charge, and it behaves as a rotating vortex dipole. We find theoretically, and confirm numerically, the form of the energy as a function of the angular momentum of the system and the associated rotation frequencies. We discuss the process of annihilation of the pair which changes the topological charge of the system by unity while its energy is monotonically decreasing. Such a change in the topological charge affects profoundly the dynamics in the magnetic system. We finally discuss the connection of our results with Bloch Points (BP) and the implications for BP dynamics.Comment: 6 pages, 2 figure

    Current induced transverse spin-wave instability in thin ferromagnets: beyond linear stability analysis

    Full text link
    A sufficiently large unpolarized current can cause a spin-wave instability in thin nanomagnets with asymmetric contacts. The dynamics beyond the instability is understood in the perturbative regime of small spin-wave amplitudes, as well as by numerically solving a discretized model. In the absence of an applied magnetic field, our numerical simulations reveal a hierarchy of instabilities, leading to chaotic magnetization dynamics for the largest current densities we consider.Comment: 14 pages, 10 figures; revtex

    Mechanisms of spin-polarized current-driven magnetization switching

    Full text link
    The mechanisms of the magnetization switching of magnetic multilayers driven by a current are studied by including exchange interaction between local moments and spin accumulation of conduction electrons. It is found that this exchange interaction leads to two additional terms in the Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both terms are proportional to the transverse spin accumulation and have comparable magnitudes

    Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films

    Full text link
    We perform a scaling analysis of the mean velocity of extended magnetic domain walls driven in ultrathin Pt/Co/Pt ferromagnetic films with perpendicular anisotropy, as a function of the applied external field for different film-thicknesses. We find that the scaling of the experimental data around the thermally rounded depinning transition is consistent with the universal depinning exponents theoretically expected for elastic interfaces described by the one-dimensional quenched Edwards-Wilkinson equation. In particular, values for the depinning exponent β\beta and thermal rounding exponent ψ\psi are tested and the present analysis of the experimental data is compatible with β=0.33\beta=0.33 and ψ=0.2\psi=0.2, in agreement with numerical simulations.Comment: 8 pages, 8 figure

    Symmetry-based approach to electron-phonon interactions in graphene

    Full text link
    We use the symmetries of monolayer graphene to write a set of constraints that must be satisfied by any electron-phonon interaction hamiltonian. The explicit solution as a series expansion in the momenta gives the most general, model-independent couplings between electrons and long wavelength acoustic and optical phonons. As an application, the possibility of describing elastic strains in terms of effective electromagnetic fields is considered in detail, with an emphasis on group theory conditions and the role of time reversal symmetry.Comment: 11 pages, 1 figure. Treatment of ripples in suspended graphene sheets included. Revised journal version with improved presentation and two new appendice
    • …
    corecore