5 research outputs found

    Areas of high conservation value at risk by plant invaders in Georgia under climate change.

    Get PDF
    Invasive alien plants (IAP) are a threat to biodiversity worldwide. Understanding and anticipating invasions allow for more efficient management. In this regard, predicting potential invasion risks by IAPs is essential to support conservation planning into areas of high conservation value (AHCV) such as sites exhibiting exceptional botanical richness, assemblage of rare, and threatened and/or endemic plant species. Here, we identified AHCV in Georgia, a country showing high plant richness, and assessed the susceptibility of these areas to colonization by IAPs under present and future climatic conditions. We used actual protected areas and areas of high plant endemism (identified using occurrences of 114 Georgian endemic plant species) as proxies for AHCV. Then, we assessed present and future potential distribution of 27 IAPs using species distribution models under four climate change scenarios and stacked single-species potential distribution into a consensus map representing IAPs richness. We evaluated present and future invasion risks in AHCV using IAPs richness as a metric of susceptibility. We show that the actual protected areas cover only 9.4% of the areas of high plant endemism in Georgia. IAPs are presently located at lower elevations around the large urban centers and in western Georgia. We predict a shift of IAPs toward eastern Georgia and higher altitudes and an increased susceptibility of AHCV to IAPs under future climate change. Our study provides a good baseline for decision makers and stakeholders on where and how resources should be invested in the most efficient way to protect Georgia's high plant richness from IAPs

    Volatile organic compounds emitted by Megaplatypus mutatus associated fungi: chemical identification and temperature-modulated responses by the ambrosial beetle

    No full text
    Abstract Background In ambrosia and bark beetles–fungi interaction, volatile organic compounds (VOCs) play a central role in mediating various aspects of community dynamics of beetles and/or fungi. These functions include facilitating beetle habitat location, mate identification, and fungal partner differentiation. However, the understanding on this context remains limited, especially in the globally distributed subfamily Platypodinae, which comprises predominantly ambrosia beetles. There is a lack of chemical data on ambrosia fungi from native South American species. This study addresses this gap by characterizing VOCs from twelve fungal species associated with Megaplatypus mutatus and assessing species-specific behavioral responses during dispersal. Methods Fungal VOCs were collected by gas chromatography–mass spectrometry combined with solid-phase microextraction and Y-olfactometry assays of males and females were performed at dispersal stage. Statistical analyses involved: non-metric multidimensional scaling multivariate plot and PERMANOVA test, a cluster analysis through unweighted pair group method with Jaccard index, and finally, a chi-square goodness-of-fit test for beetle behavioral assays. Results We identified 72 VOCs from the fungal species isolated from M. mutatus galleries, exocuticle, and gut. The olfactory behavior of M. mutatus demonstrated its capacity to discriminate between volatile profiles, showing a preference for either the fungus or the control source. Our results also enhance the understanding in a chemotaxonomic context and in the behavioral responses of M. mutatus revealing the beetle's remarkable low temperature tolerance and its capability to maintain mobility and orientation toward volatile sources even after zero-degree Celsius exposure. Conclusion This study presents a comprehensive insight into fungal VOC profiles, emphasizing the sources of isolation within pest associated fungi, as well as its symbiotic species from the Raffaelea genus. In conclusion, our findings suggest that Megaplatypus mutatus exhibits a general aversion to its fungal VOCs symbiont. However, a notable exception arises when the beetles are pre-exposed for 48 h to freezing conditions, highlighting the beetles' ability to withstand freezing conditions as adults and to exhibit altered responses to their fungal associates under these circumstances
    corecore