11 research outputs found

    Genome analysis of Thermosulfuriphilus ammonigenes ST65T, an anaerobic thermophilic chemolithoautotrophic bacterium isolated from a deep-sea hydrothermal vent

    No full text
    International audienceThermosulfuriphilus ammonigenes ST65 T is an anaerobic thermophilic bacterium isolated from a deep-sea hy-drothermal vent chimney. T. ammonigenes is an obligate chemolithoautotroph utilizing elemental sulfur as an electron donor and nitrate as an electron acceptor with sulfate and ammonium formation. It also is able to grow by disproportionation of elemental sulfur, thiosulfate and sulfite. Here, we present the complete genome sequence of strain ST65 T. The genome consists of a single chromosome of 2,287,345 base pairs in size and has a G + C content of 51.9 mol%. The genome encodes 2172 proteins, 48 tRNA genes, and 3 rRNA genes. Genome analysis revealed a complete set of genes essential to CO 2 fixation and gluconeogenesis. Homologs of genes encoding known enzyme systems for nitrate ammonification are absent in the genome of T. ammonigenes assuming unique mechanism for this pathway. The genome of strain ST65 T encodes a complete set of genes necessary for dissimilatory sulfate reduction, which are probably involved in sulfur disproportionation and anaerobic oxidation. This is the first reported genome of a bacterium from the genus Thermosulfuriphilus, providing insights into the microbial contribution into carbon, sulfur and nitrogen cycles in the deep-sea hydro-thermal vent environment

    Genetic Potential of Dissulfurimicrobium hydrothermale, an Obligate Sulfur-Disproportionating Thermophilic Microorganism

    No full text
    The biochemical pathways of anaerobic sulfur disproportionation are only partially deciphered, and the mechanisms involved in the first step of S0-disproportionation remain unknown. Here, we present the results of sequencing and analysis of the complete genome of Dissulfurimicrobium hydrothermale strain Sh68T, one of two strains isolated to date known to grow exclusively by anaerobic disproportionation of inorganic sulfur compounds. Dissulfurimicrobium hydrothermale Sh68T is a motile, thermophilic, anaerobic, chemolithoautotrophic microorganism isolated from a hydrothermal pond at Uzon caldera, Kamchatka, Russia. It is able to produce energy and grow by disproportionation of elemental sulfur, sulfite and thiosulfate. Its genome consists of a circular chromosome of 2,025,450 base pairs, has a G + C content of 49.66% and a completion of 97.6%. Genomic data suggest that CO2 assimilation is carried out by the Wood–Ljungdhal pathway and that central anabolism involves the gluconeogenesis pathway. The genome of strain Sh68T encodes the complete gene set of the dissimilatory sulfate reduction pathway, some of which are likely to be involved in sulfur disproportionation. A short sequence protein of unknown function present in the genome of strain Sh68T is conserved in the genomes of a large panel of other S0-disproportionating bacteria and was absent from the genomes of microorganisms incapable of elemental sulfur disproportionation. We propose that this protein may be involved in the first step of elemental sulfur disproportionation, as S0 is poorly soluble and unable to cross the cytoplasmic membrane in this form

    Genomic Characterization and Environmental Distribution of a Thermophilic Anaerobe Dissulfurirhabdus thermomarina SH388T Involved in Disproportionation of Sulfur Compounds in Shallow Sea Hydrothermal Vents

    No full text
    Marine hydrothermal systems are characterized by a pronounced biogeochemical sulfur cycle with the participation of sulfur-oxidizing, sulfate-reducing and sulfur-disproportionating microorganisms. The diversity and metabolism of sulfur disproportionators are studied to a much lesser extent compared with other microbial groups. Dissulfurirhabdus thermomarina SH388T is an anaerobic thermophilic bacterium isolated from a shallow sea hydrothermal vent. D. thermomarina is an obligate chemolithoautotroph able to grow by the disproportionation of sulfite and elemental sulfur. Here, we present the results of the sequencing and analysis of the high-quality draft genome of strain SH388T. The genome consists of a one circular chromosome of 2,461,642 base pairs, has a G + C content of 71.1 mol% and 2267 protein-coding sequences. The genome analysis revealed a complete set of genes essential to CO2 fixation via the reductive acetyl-CoA (Wood-Ljungdahl) pathway and gluconeogenesis. The genome of D. thermomarina encodes a complete set of genes necessary for the dissimilatory reduction of sulfates, which are probably involved in the disproportionation of sulfur. Data on the occurrences of Dissulfurirhabdus 16S rRNA gene sequences in gene libraries and metagenome datasets showed the worldwide distribution of the members of this genus. This study expands our knowledge of the microbial contribution into carbon and sulfur cycles in the marine hydrothermal environment

    Physiological and Genomic Characterization of a Hyperthermophilic Archaeon Archaeoglobus neptunius sp. nov. Isolated From a Deep-Sea Hydrothermal Vent Warrants the Reclassification of the Genus Archaeoglobus

    Get PDF
    Hyperthermophilic archaea of the genus Archaeoglobus are the subject of many fundamental and biotechnological researches. Despite their significance, the class Archaeoglobi is currently represented by only eight species obtained as axenic cultures and taxonomically characterized. Here, we report the isolation and characterization of a new species of Archaeoglobus from a deep-sea hydrothermal vent (Mid-Atlantic Ridge, TAG) for which the name Archaeoglobus neptunius sp. nov. is proposed. The type strain is SE56T (=DSM 110954T = VKM B-3474T). The cells of the novel isolate are motile irregular cocci growing at 50–85°C, pH 5.5–7.5, and NaCl concentrations of 1.5–4.5% (w/v). Strain SE56T grows lithoautotrophically with H2 as an electron donor, sulfite or thiosulfate as an electron acceptor, and CO2/HCO3− as a carbon source. It is also capable of chemoorganotrophic growth by reduction of sulfate, sulfite, or thiosulfate. The genome of the new isolate consists of a 2,115,826 bp chromosome with an overall G + C content of 46.0 mol%. The whole-genome annotation confirms the key metabolic features of the novel isolate demonstrated experimentally. Genome contains a complete set of genes involved in CO2 fixation via reductive acetyl-CoA pathway, gluconeogenesis, hydrogen and fatty acids oxidation, sulfate reduction, and flagellar motility. The phylogenomic reconstruction based on 122 conserved single-copy archaeal proteins supported by average nucleotide identity (ANI), average amino acid identity (AAI), and alignment fraction (AF) values, indicates a polyphyletic origin of the species currently included into the genus Archaeoglobus, warranting its reclassification

    Complete genome sequence of Thermosulfurimonas marina SU872T, an anaerobic thermophilic chemolithoautotrophic bacterium isolated from a shallow marine hydrothermal vent

    No full text
    Thermosulfurimonas marina strain SU872T is a thermophilic, anaerobic, chemolithoautotrophic bacterium, isolated from a shallow-sea hydrothermal vent in the Pacific Ocean near Kunashir Island, that is able to grow by disproportionation of inorganic sulfur compounds and dissimilatory nitrate reduction to ammonium. Here we report the complete genome sequence of strain SU872T, which presents one circular chromosome of 1,763,258 bp with a mean G + C content of 58.9 mol%. The complete genome harbors 1827 predicted protein-encoding genes, 47 tRNA genes and 3 rRNA genes. Genes involved in sulfur and nitrogen metabolism were identified. This study expands our knowledge of sulfur and nitrogen use in energy metabolism of high temperatures areas of shallow-sea hydrothermal environments. In order to highlight Thermosulfurimonas marina metabolic features, its genome was compared with that of Thermosulfurimonas dismutans, the only other species described within the Thermosulfurimonas genus

    PCR-Based Identification of Hyperthermophilic Archaea of the Family Thermococcaceae

    No full text
    A method for rapid detection and identification of hyperthermophilic archaea of the family Thermococcaceae based on PCR amplification of 16S rRNA gene fragments with primers TcPc 173F (5′-TCCCCCATAGGYCTGRGGTACTGGAAGGTC-3′) and TcPc 589R (5′-GCCGTGRGATTTCGCCAGGGACTTACGGGC-3′) was developed and used for identification of new isolates

    Thermosulfuriphilus ammonigenes gen. nov., sp. nov., a Thermophilic, ChemolithoautotrOphic Bacterium Capable of Respiratory Ammonification of Nitrate with Elemental Sulfur

    No full text
    An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain ST65T) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Centre in the south-western Pacific Ocean, at a depth of 1870 m. Cells of strain ST65T were non-motile straight or slightly curved short rods, 0.5–0.6 µm in diameter and 0.8–1.5 µm in length. The temperature range for growth was 47–75 °C, with an optimum at 65 °C. The pH range for growth was 5.5–7.5, with an optimum at pH 6.5. Growth of strain ST65T was observed at NaCl concentrations ranging from 1.5 to 4.5 % (w/v), with an optimum at 2.0–2.5 %. Strain ST65T grew anaerobically with inorganic carbon as a carbon source and with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. It was also able to grow by disproportionation of elemental sulfur, thiosulfate and sulfite. Sulfate was not utilized as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to a deep lineage in the phylum Thermodesulfobacteria . On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents a novel species of a new genus, Thermosulfuriphilus ammonigenes gen. nov., sp. nov. ST65T (=DSM 102941T=VKM B-2855T) is the type strain of the type species

    Genomic Insights into the Carbon and Energy Metabolism of a Thermophilic Deep-Sea Bacterium Deferribacter autotrophicus Revealed New Metabolic Traits in the Phylum Deferribacteres

    No full text
    International audienceInformation on the biochemical pathways of carbon and energy metabolism in representatives of the deep lineage bacterial phylum Deferribacteres are scarce. Here, we report the results of the sequencing and analysis of the high-quality draft genome of the thermophilic chemolithoautotrophic anaerobe Deferribacter autotrophicus. Genomic data suggest that CO 2 assimilation is carried out by recently proposed reversible tricarboxylic acid cycle ("roTCA cycle"). The predicted genomic ability of D. autotrophicus to grow due to the oxidation of carbon monoxide was experimentally proven. CO oxidation was coupled with the reduction of nitrate to ammonium. Utilization of CO most likely involves anaerobic [Ni, Fe]-containing CO dehydrogenase. This is the first evidence of CO oxidation in the phylum Deferribacteres. The genome of D. autotrophicus encodes a Nap-type complex of nitrate reduction. However, the conversion of produced nitrite to ammonium proceeds via a non-canonical pathway with the participation of hydroxylamine oxidoreductase (Hao) and hydroxylamine reductase. The genome contains 17 genes of putative multiheme c-type cytochromes and "e-pilin" genes, some of which are probably involved in Fe(III) reduction. Genomic analysis indicates that the roTCA cycle of CO 2 fixation and putative Hao-enabled ammonification may occur in several members of the phylum Deferribacteres
    corecore