7 research outputs found

    A method for validating the accuracy of NMR protein structures

    Get PDF
    We present a method that measures the accuracy of NMR protein structures. It compares random coil index [RCI] against local rigidity predicted by mathematical rigidity theory, calculated from NMR structures [FIRST], using a correlation score (which assesses secondary structure), and an RMSD score (which measures overall rigidity). We test its performance using: structures refined in explicit solvent, which are much better than unrefined structures; decoy structures generated for 89 NMR structures; and conventional predictors of accuracy such as number of restraints per residue, restraint violations, energy of structure, ensemble RMSD, Ramachandran distribution, and clashscore. Restraint violations and RMSD are poor measures of accuracy. Comparisons of NMR to crystal structures show that secondary structure is equally accurate, but crystal structures are typically too rigid in loops, whereas NMR structures are typically too floppy overall. We show that the method is a useful addition to existing measures of accuracy

    The accuracy of NMR protein structures in the Protein Data Bank

    No full text
    The program ANSURR measures the accuracy of NMR structures by comparing rigidity obtained from experimental backbone chemical shifts and from structures. We report on ANSURR analysis of 7,000 PDB NMR ensembles within the Protein Data Bank, which can be found at ansurr.com. The accuracy of NMR structures progressively improved up until 2005, but since then, it has plateaued. Most structures have accurate secondary structure, but are generally too floppy, particularly in loops. Thus, there is a need for more experimental restraints in loops. Currently, the best predictors of accuracy are Ramachandran distribution and the number of NOE restraints per residue. The precision of structures within the ensemble correlates well with accuracy, as does the number of hydrogen bond restraints per residue. Structure accuracy is improved when other components (such as additional polypeptide chains or ligands) are included

    Substrate-Based Allosteric Regulation of a Homodimeric Enzyme

    No full text
    Many enzymes operate through half-of-the sites reactivity wherein a single protomer is catalytically engaged at one time. In the case of the homodimeric enzyme, fluoroacetate dehalogenase, substrate binding triggers closing of a regulatory cap domain in the empty protomer, preventing substrate access to the remaining active site. However, the empty protomer serves a critical role by acquiring more disorder upon substrate binding, thereby entropically favoring the forward reaction. Empty protomer dynamics are also allosterically coupled to the bound protomer, driving conformational exchange at the active site and progress along the reaction coordinate. Here, we show that at high concentrations, a second substrate binds along the substrate-access channel of the occupied protomer, thereby dampening interprotomer dynamics and inhibiting catalysis. While a mutation (K152I) abrogates second site binding and removes inhibitory effects, it also precipitously lowers the maximum catalytic rate, implying a role for the allosteric pocket at low substrate concentrations, where only a single substrate engages the enzyme at one time. We show that this outer pocket first desolvates the substrate, whereupon it is deposited in the active site. Substrate binding to the active site then triggers the empty outer pocket to serve as an interprotomer allosteric conduit, enabling enhanced dynamics and sampling of activation states needed for catalysis. These allosteric networks and the ensuing changes resulting from second substrate binding are delineated using rigidity-based allosteric transmission theory and validated by nuclear magnetic resonance and functional studies. The results illustrate the role of dynamics along allosteric networks in facilitating function
    corecore