3 research outputs found
A Climatology of Atmospheric Rivers and Associated Precipitation for the Seven US National Climate Assessment Regions
Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. The findings show that warm extremes at most locations are associated with positive 500-hPa geopotential height and sea level pressure anomalies just downstream with negative anomalies farther upstream. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. Circulation patterns aloft are more coherent across the continent than those at the surface where local surface features influence the occurrence of and patterns associated with extreme temperature days. Temperature extremes may be more sensitive to small shifts in circulation at locations where temperature is strongly influenced by mountains or large water bodies, or at the margins of important large-scale circulation patterns making such locations more susceptible to nonlinear responses to future climate change. The identification of these patterns and processes will allow for a thorough evaluation of the ability of climate models to realistically simulate extreme temperatures and their future trends
Recommended from our members
Recreating the California New Year's Flood Event of 1997 in a Regionally Refined Earth System Model
Abstract:
The 1997 New Year's flood event was the most costly in California's history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM‐E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California‐focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time‐series and causal analysis frameworks are used to examine runoff sensitivities state‐wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time‐series shape, than forecast lead time, 2‐to‐4 days prior to the 1997 flood onset
Recreating the California New Year's Flood Event of 1997 in a Regionally Refined Earth System Model
Abstract The 1997 New Year's flood event was the most costly in California's history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM‐E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California‐focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time‐series and causal analysis frameworks are used to examine runoff sensitivities state‐wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time‐series shape, than forecast lead time, 2‐to‐4 days prior to the 1997 flood onset