62 research outputs found

    Effect of plyometric training on handspring vault performance and functional power in youth female gymnasts

    Get PDF
    This study aimed to determine the effect of plyometric training (PT) when added to habitual gymnastic training (HT) on handspring vault (HV) performance variables. Twenty youth female competitive gymnasts (Age: 12.5 ± 1.67 y) volunteered to participate and were randomly assigned to two independent groups. The experimental plyometric training group (PTG) undertook a six-week plyometric program, involving two additional 45 min PT sessions a week, alongside their HT, while the control group (CG) performed regular HT only. Videography was used (120 Hz) in the sagittal plane to record both groups performing three HVs for both the baseline and post-intervention trials. Furthermore, participants completed a countermovement jump test (CMJ) to assess the effect of PT on functional power. Through the use of Quintic biomechanics software, significant improvements (P < 0.05) were found for the PTG for run-up velocity, take-off velocity, hurdle to board distance, board contact time, table contact time and post-flight time and CMJ height. However, there were no significant improvements on pre-flight time, shoulder angle or hip angle on the vault for the PTG. The CG demonstrated no improvement for all HV measures. A sport-specific PT intervention improved handspring vault performance measures and functional power when added to the habitual training of youth female gymnasts. The additional two hours plyometric training seemingly improved the power generating capacity of movement-specific musculature, which consequently improved aspects of vaulting performance. Future research is required to examine the whether the improvements are as a consequence of the additional volume of sprinting and jumping activities, as a result of the specific PT method or a combination of these factors

    Is bioelectrical impedance accurate for use in large epidemiological studies?

    Get PDF
    Percentage of body fat is strongly associated with the risk of several chronic diseases but its accurate measurement is difficult. Bioelectrical impedance analysis (BIA) is a relatively simple, quick and non-invasive technique, to measure body composition. It measures body fat accurately in controlled clinical conditions but its performance in the field is inconsistent. In large epidemiologic studies simpler surrogate techniques such as body mass index (BMI), waist circumference, and waist-hip ratio are frequently used instead of BIA to measure body fatness. We reviewed the rationale, theory, and technique of recently developed systems such as foot (or hand)-to-foot BIA measurement, and the elements that could influence its results in large epidemiologic studies. BIA results are influenced by factors such as the environment, ethnicity, phase of menstrual cycle, and underlying medical conditions. We concluded that BIA measurements validated for specific ethnic groups, populations and conditions can accurately measure body fat in those populations, but not others and suggest that for large epdiemiological studies with diverse populations BIA may not be the appropriate choice for body composition measurement unless specific calibration equations are developed for different groups participating in the study

    Associations between Screen Time and Physical Activity among Spanish Adolescents

    Get PDF
    Excessive time in front of a single or several screens could explain a displacement of physical activity. The present study aimed at determining whether screen-time is associated with a reduced level of moderate to vigorous physical activity (MVPA) in Spanish adolescents living in favorable environmental conditions. or more to total screen-time showed a 64% (OR = 0.61, 95% CI, 0.44–0.86) increased risk of failing to achieve the recommended adolescent MVPA level. Participation in organized physical activities and sports competitions were more strongly associated with MVPA than screen-related behaviors.No single screen-related behavior explained the reduction of MVPA in adolescents. However, the total time accumulated through several screen-related behaviors was negatively associated with MVPA level in boys. This association could be due to lower availability of time for exercise as the time devoted to sedentary screen-time activities increases. Participation in organized physical activities seems to counteract the negative impact of excessive time in front of screens on physical activity

    Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls

    Get PDF
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD. METHODS: We assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPD(L)) (FEV(1) 30 ± 3.6%pred, FFMI 15 ± 0.2 Kg.m(−2)) with patients with COPD and normal FFMI (COPD(N)) (FEV(1) 44 ± 5.8%pred, FFMI 19 ± 0.5 Kg.m(−2)) and a group of age and sex matched healthy controls (C) (FEV(1) 95 ± 3.9%pred, FFMI 20 ± 0.8 Kg.m(−2)) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting. RESULTS: A subset of 42 genes was differentially expressed in COPD(L) in comparison to both COPD(N) and C (PFP < 0.05; −1.5 ≥ FC ≥ 1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPD(L). CONCLUSIONS: This study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12931-014-0139-5) contains supplementary material, which is available to authorized users

    Chemical composition of meat and blubber of the Cape fur seal (Arctocephalus pusillus pusillus)

    No full text
    Although the Cape fur seal is harvested commercially in southern Africa, no data exist to indicate whether its meat composition is such that it can be consumed by humans. Presently, these animals are harvested mainly for their hides. Little is known about the chemical composition of the meat and blubber and whether it could be processed into food or animal feed. This is the first report on the chemical composition of the Pectoralis muscle and fat of seal pups and bulls. The fat content in the muscle of pups was higher (4.2 g/100 g) than recorded in bulls (2.4 g/100 g). The protein content in muscle, on the other hand, was similar (23.2 g/100 g) for animals of both age groups. The blubber of bulls had a higher protein level (26.6 g/100 g) compared to that of pups (14.6 g/100 g), but a lower fat content (67.1 g/100 g vs 77.2 g/100 g). Muscle of bulls contained 33% saturated fatty acids (SFA), 29% monounsaturated fatty acids (MUFA) and 38% polyunsaturated fatty acids (PUFA). Muscle of pups contained 39% SFA, 30% MUFA and 31% PUFA. The toxin content in Cape fur seal blubber was lower than that reported for the blubber of Canadian seals. The organochlorine content in the blubber of Cape fur seals was lower than 13.7 ng/g oil, whereas levels as high as 87.2 ng/g have been reported in Canadian seal oil. The chemical composition of the Cape fur seal is such that it could be classified as a healthy meat source

    Production of salami from beef, horse, mutton, Blesbok (Damaliscus dorcas phillipsi) and Springbok (Antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus

    No full text
    Lactobacillus plantarum 423, producer of bacteriocin 423, Lactobacillus curvatus DF38, producer of curvacin DF38, and a bacteriocin-negative mutant of L. plantarum 423 (423m) were evaluated as starter cultures in the production of salami from beef, horse, mutton, Blesbok (Damaliscus dorcas phillipsi) and Springbok (Antidorcas marsupialis). Growth of L. plantarum 423 and L. curvatus DF38 was best supported in Blesbok salami, as revealed by the highest growth rate during sweating, cold smoking and maturation, and final cell numbers after 70 days (1 × 108 and 5 × 107 cfu/g, respectively). Growth of Listeria innocua was the best suppressed in Blesbok salami fermented with L. plantarum 423 and L. curvatus DF38. Growth of L. innocua in horse salami was best suppressed when fermented with L. curvatus DF38. The final pH of salami fermented with L. plantarum 423 and L. plantarum 423m was slightly lower (4.4) compared to the pH of salami produced with L. curvatus DF38 (pH 4.7). No significant differences (P &gt; 0.05) were recorded by a trained sensory taste panel amongst the three starter cultures regarding colour and venison like aroma. Horse, Blesbok and Springbok salami were rated significantly higher (P ≤ 0.05) in salami flavour than mutton salami, which was rated the lowest for this attribute. Blesbok salami was rated the highest for sour meat aroma, while beef salami was rated the lowest. Springbok salami was rated the highest in terms of oily mouth feel. Beef salami had the most compact structure and horse salami the softest structure of all meat types fermented. In general, salami produced with L. plantarum 423 yielded the best sour meat aroma, colour, texture, venison like flavour, sour meat flavour and oily mouthfeel and is considered superior to the L. plantarum mutant (strain 423m) and L. curvatus DF38. © 2007 Elsevier Ltd. All rights reserved.Articl
    • …
    corecore