4 research outputs found

    An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo

    Get PDF
    The challenge of treating neurological disorders has motivated the development of implantable devices that can deliver treatment when and where it’s needed. This study presents a novel brain implant capable of electrophoretically delivering drugs and recording local neural activity on the surface of the brain. The drug delivery is made possible by the integration of a microfluidic ion pump (µFIP) into a conformable electrocorticography (ECoG) device with recording cites embedded next to the drug delivery outlets. The µFIP ECoG device can deliver a high capacity of several biologically important cationic species on demand. The therapeutic potential of the device is demonstrated by using it to deliver neurotransmitters in a rodent model while simultaneously recording local neural activity. These developments represent a significant step forward for cortical drug-delivery systems

    Electrophoretic Delivery of γ-aminobutyric Acid (GABA) into Epileptic Focus Prevents Seizures in Mice.

    No full text
    Epilepsy is a group of neurological disorders which affects millions of people worldwide. Although treatment with medication is helpful in 70% of the cases, serious side effects affect the quality of life of patients. Moreover, a high percentage of epileptic patients are drug resistant; in their case, neurosurgery or neurostimulation are necessary. Therefore, the major goal of epilepsy research is to discover new therapies which are either capable of curing epilepsy without side effects or preventing recurrent seizures in drug-resistant patients. Neuroengineering provides new approaches by using novel strategies and technologies to find better solutions to cure epileptic patients at risk. As a demonstration of a novel experimental protocol in an acute mouse model of epilepsy, a direct in situ electrophoretic drug delivery system is used. Namely, a neural probe incorporating a microfluidic ion pump (µFIP) for on-demand drug delivery and simultaneous recording of local neural activity is implanted and demonstrated to be capable of controlling 4-aminopyridine-induced (4AP-induced) seizure-like event (SLE) activity. The γ-aminobutyric acid (GABA) concentration is kept in the physiological range by the precise control of GABA delivery to reach an antiepileptic effect in the seizure focus but not to cause overinhibition-induced rebound bursts. The method allows both the detection of pathological activity and intervention to stop seizures by delivering inhibitory neurotransmitters directly to the epileptic focus with precise spatiotemporal control. As a result of the developments to the experimental method, SLEs can be induced in a highly localized manner that allows seizure control by the precisely tuned GABA delivery at the seizure onset

    NeuroRoots, a bio-inspired, seamless Brain Machine Interface device for long-term recording

    No full text
    Abstract Minimally invasive electrodes of cellular scale that approach a bio-integrative level of neural recording could enable the development of scalable brain machine interfaces that stably interface with the same neural populations over long period of time. In this paper, we designed and created NeuroRoots, a bio-mimetic multi-channel implant sharing similar dimension (10µm wide, 1.5µm thick), mechanical flexibility and spatial distribution as axon bundles in the brain. A simple approach of delivery is reported based on the assembly and controllable immobilization of the electrode onto a 35µm microwire shuttle by using capillarity and surface-tension in aqueous solution. Once implanted into targeted regions of the brain, the microwire was retracted leaving NeuroRoots in the biological tissue with minimal surgical footprint and perturbation of existing neural architectures within the tissue. NeuroRoots was implanted using a platform compatible with commercially available electrophysiology rigs and with measurements of interests in behavioral experiments in adult rats freely moving into maze. We demonstrated that NeuroRoots electrodes reliably detected action potentials for at least 7 weeks and the signal amplitude and shape remained relatively constant during long-term implantation. This research represents a step forward in the direction of developing the next generation of seamless brain-machine interface to study and modulate the activities of specific sub-populations of neurons, and to develop therapies for a plethora of neurological diseases
    corecore