572 research outputs found

    Investigating the Effectiveness of the Tutorials in Introductory Physics in Multiple Instructional Settings

    Full text link
    This paper examines the educational impact of the implementation of "Changes in Energy and Momentum" from the Tutorials in Introductory Physics in five different instructional settings. These settings include (1) a completely computer-based learning environment and (2) use of cooperative learning groups with varying levels of instructor support. Pre- and post-tests provide evidence that a computer-based implementation falls significantly short of classroom implementations which involve both collaborative learning groups and interactions with a teaching assistance. Other findings provide insight into the importance of certain elements of instructor training and the appropriate use of the tutorial as an initial introduction to a new concept.Comment: 8 Pages, 3 figures, 4 table

    Spectral Properties of Holstein and Breathing Polarons

    Full text link
    We calculate the spectral properties of the one-dimensional Holstein and breathing polarons using the self-consistent Born approximation. The Holstein model electron-phonon coupling is momentum independent while the breathing coupling increases monotonically with the phonon momentum. We find that for a linear or tight binding electron dispersion: i) for the same value of the dimensionless coupling the quasiparticle renormalization at small momentum in the breathing polaron is much smaller, ii) the quasiparticle renormalization at small momentum in the breathing polaron increases with phonon frequency unlike in the Holstein model where it decreases, iii) in the Holstein model the quasiparticle dispersion displays a kink and a small gap at an excitation energy equal to the phonon frequency w0 while in the breathing model it displays two gaps, one at excitation energy w0 and another one at 2w0. These differences have two reasons: first, the momentum of the relevant scattered phonons increases with increasing polaron momentum and second, the breathing bare coupling is an increasing function of the phonon momentum. These result in an effective electron-phonon coupling for the breathing model which is an increasing function of the total polaron momentum, such that the small momentum polaron is in the weak coupling regime while the large momentum one is in the strong coupling regime. However the first reason does not hold if the free electron dispersion has low energy states separated by large momentum, as in a higher dimensional system for example, in which situation the difference between the two models becomes less significant.Comment: 11 pages, 10 figure

    The rich cluster of galaxies ABCG 85.I. X-ray analysis

    Full text link
    We present an X-ray analysis of the rich cluster ABCG 85 based on ROSAT PSPC data. By applying an improved wavelet analysis, we show that our view of this cluster is notably changed from what was previously believed (a main region and a south blob). The main emission comes from the central part of the main body of the cluster on which is superimposed that of a foreground group of galaxies. The foreground group and the main cluster are separated (if redshifts are cosmological) by 46 1/h_50 Mpc. The southern blob is clearly not a group: it is resolved into X-ray emitting galaxies (in particular the second more luminous galaxy of the main cluster). Several X-ray features are identified with bright galaxies. We performed a spectral analysis and derived the temperature (T), metallicity (Z) and hydrogen column density NH. The global quantities are: T=4keV (in agreement with the velocity dispersion of 760km/s) and Z=0.2Z⊙Z=0.2Z_\odot. We cannot derive accurate gradients for these quantities with our data, but there is strong evidence that the temperature is lower (∌2.8keV\sim 2.8 keV) and the metallicity much higher (Z ∌0.8Z⊙\sim 0.8 Z_\odot) in the very centre (within about 50 1/h_50 kpc). We present a pixel by pixel method to model the physical properties of the X-ray gas and derive its density distribution. We apply classical methods to estimate the dynamical, gas and stellar masses, as well as the cooling time and cooling flow characteristics. At the limiting radius of the image (1.4 1/h_50 Mpc), we find MDyn∌(2.1−2.9)10141/h50MM_{\rm Dyn}\sim (2.1-2.9)10^{14} 1/h_50 M_{\odot},, M_{gas}/M_{Dyn}\sim 0.18 h_{50}^{-1.5}.Thestellarmassis. The stellar mass is 6.7\ 10^{12}M_{\odot},givingamasstolightratioof, giving a mass to light ratio of M/L_{V}\sim 300$. The cooling time is estimated for different models, leading to a cooling radius of 30-80 kpc depending on theComment: 14 pages incl 16 postscript figures available, 4 tables, corrected stellar mass. Accepted for publication in Astronomy & Astrophysic

    The rich cluster of galaxies ABCG 85. II. X-ray analysis using the ROSAT HRI

    Full text link
    We present a new X-ray analysis mainly based on ROSAT HRI data. The HRI spatial resolution combined with an improved wavelet analysis method and with complementary radio and optical data provides new results compared to a previous paper based on ROSAT PSPC data (Pislar et al. 1997). We use also redshift data in order to identify galaxies dynamically belonging to the main body of the cluster and/or to superimposed substructures. Various kinds of emission are superimposed on a mean thermal X-ray emission due to the intra-cluster gas: a) an X-ray flux excess in the centre; b) a south blob, partially generated by individual galaxies. The mean velocity and velocity dispersion of the galaxies located in this region are the same as those of the cluster as a whole: it therefore does not seem to be a bound subgroup; c) West emission due to a foreground group with self-emission from a Seyfert galaxy located at the north-west; d) emission in the south-west due to inverse Compton emission associated to a very steep radio source (the remnant of an active galactic nucleus). We have examined the possibility for the central peak to be an "unusual" galaxy, as assumed for the central galaxy of J2310-43 (Tananbaum et al. 1997). We conclude on the existence of a cooling flow region, in which the presence of at least three small features certainly related to cooler blobs is revealed by the wavelet analysis. We have performed a pixel-to-pixel modelling of the double X-ray emission. The large scale emission component is comparable to those derived from by the PSPC data and the small scale one is interpreted as a cooling-flow. A multiphase gas model analysis leads to a mass deposit of 50-150 M_\odot/yr.Comment: 11 pages, 6 figures, 3 tables, LaTeX Accepted for publication in Astronomy & Astrophysics main journa

    A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Get PDF
    Wavelets are scaleable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero. In addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly non-zero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. In this paper, we describe the mission-independent, wavelet-based source detection algorithm WAVDETECT, part of the CIAO software package. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e. flat-fielded) background maps; (2) the correction for exposure variations within the field-of-view; (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the algorithm's robustness by applying it to various images.Comment: Accepted for publication in Ap. J. Supp. (v. 138 Jan. 2002). 61 pages, 23 figures, expands to 3.8 Mb. Abstract abridged for astro-ph submissio

    A 3-D wavelet analysis of substructure in the Coma cluster: statistics and morphology

    Full text link
    Evidence for clustering within the Coma cluster is found by means of a multiscale analysis of the combined angular-redshift distribution. We have compiled a catalogue of 798 galaxy redshifts from published surveys from the region of the Coma cluster. We examine the presence of substructure and of voids at different scales ranging from ∌1to∌16h−1\sim 1 to \sim 16 h^{-1} Mpc, using subsamples of the catalogue, ranging from cz=3000cz=3000 km/s to cz=28000cz=28000 km/s. Our substructure detection method is based on the wavelet transform and on the segmentation analysis. The wavelet transform allows us to find out structures at different scales and the segmentation method allows us a quantitative statistical and morphological analysis of the sample. From the whole catalogue we select a subset of 320 galaxies, with redshifts between cz=5858 km/s and cz=8168 km/s that we identify as belonging to the central region of Coma and on which we have performed a deeper analysis, on scales ranging from 180h−1180 h^{-1} kpc to 1.44h−11.44 h^{-1} Mpc. Our results are expressed in terms of the number of structures or voids and their sphericity for different values of the threshold detection and at all the scales investigated. According to our analysis, there is strong evidence for multiple hierarchical substructure, on scales ranging from a few hundreds of kpc to about 4h−14 h^{-1} Mpc. The morphology of these substructures is rather spherical. On the scale of 720h−1720 h^{-1} kpc we find two main subclusters which where also found before, but our wavelet analysis shows even more substructures, whose redshift position is approximatively marked by these bright galaxies: NGC 4934 & 4840, 4889, 4898 & 4864, 4874 & 4839, 4927, 4875.Comment: 24 pages, 6 figures. ApJ (Main Journal), accepted for publication. Added one section on statistical tests and slightly modified text and abstrac

    The Relationship between Arthritis and Muscular Strength in Older Women with Symptoms of Sarcopenia

    Get PDF
    Background: Sarcopenia classification is important for prevention or intervention of sarcopenia in the elderly. However, measures used for the current sarcopenia criteria, including muscular strength, could be impacted by forms of arthritis. Thus, it is crucial to understand the impact arthritis has on sarcopenia status. Objectives: The aim was to investigate if arthritis relates to sarcopenia classification via grip strength or single chair stand in older women. A secondary aim was to assess the relationship between grip strength and upper and lower body strength in those with arthritis. Design: A cross-sectional analysis. Setting and participants: Sixty-one community-dwelling older women (71.9±4.6 years) from Rhode Island. Measurements: Sarcopenia status was classified using established working definitions. Grip strength was measured using a hand grip dynamometer, chair stands were measured via a single chair stand test, and gait speed was assessed using a four-meter walk test. A segmental multifrequency bioelectrical impedance analysis assessed body composition and arthritis status was based on self-report. Upper and lower body muscular strength were measured using a chest press and leg press one repetition maximum. Results: No associations were observed between arthritis and sarcopenia status (p=0.36) nor arthritis and upper or lower body muscular strength and grip strength. Conclusions: The results of this study may indicate that arthritis is not associated with sarcopenia status but may affect other measures of muscular strength

    When the optimal is not the best: parameter estimation in complex biological models

    Get PDF
    Background: The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result in biologically implausible values. Results: We discuss different methodological approaches to estimate parameters in complex biological models. We make use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic solutions, including the global minimum corresponding to the best fit. Conclusions: The case studied in this paper shows one example in which model parameters that optimally fit the data are not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex system, and point to the need of a theory that addresses this problem more generally

    Comparison of Current Sarcopenia Classification Criteria in Older New England Women

    Get PDF
    Objectives: To evaluate the prevalence of sarcopenia in a sample of older, sedentary women using criteria from the European Working Group on Sarcopenia in Older People (EWGSOP), the International Working Group (IWG), and the Foundation for the National Institutes of Health Sarcopenia Project (FNIHSP). Design: Cross-sectional analysis. Setting and Participants: Community-dwelling women (n = 61) aged 71.9 ± 4.6 years (mean±SD) with a BMI 27.3 ± 6.0 kg/m2 who by self-report were healthy and did not exercise were recruited and evaluated for sarcopenia. Measurements: Height, weight, grip strength, gait speed, and appendicular lean mass (via segmental multi-frequency bioelectrical impedance analysis: SMF-BIA) were measured. Prevalence was reported using descriptive statistics and a Fisher’s exact test was used to analyze the distribution frequency of sarcopenia classification by different criteria. Results: In this sample 14.8% met EWGSOP criteria, 6.6% met FNIHSP criteria, and 3.3% met IWG criteria. There was a borderline significant difference in distribution frequency between EWGSOP and IWG classification criteria (p=0.053). Conclusion: The variation in sarcopenia prevalence depending on the diagnostic criteria used is consistent with previous research and there are borderline significant differences between classification criteria in this population. These data suggest the need for additional examination to determine current cut points for ALM measured by SMF-BIA, as well as which established definition of sarcopenia is appropriate for this population
    • 

    corecore