637 research outputs found

    An SVD-approach to Jacobi-Davidson solution of nonlinear Helmholtz eigenvalue problems

    Get PDF
    Numerical solution of the Helmholtz equation in an infinite domain often involves restriction of the domain to a bounded computational window where a numerical solution method is applied. On the boundary of the computational window artificial transparent boundary conditions are posed, for example, widely used perfectly matched layers (PMLs) or absorbing boundary conditions (ABCs). Recently proposed transparent-influx boundary conditions (TIBCs) resolve a number of drawbacks typically attributed to PMLs and ABCs, such as introduction of spurious solutions and the inability to have a tight computational window. Unlike the PMLs or ABCs, the TIBCs lead to a nonlinear dependence of the boundary integral operator on the frequency. Thus, a nonlinear Helmholtz eigenvalue problem arises. \ud This paper presents an approach for solving such nonlinear eigenproblems which is based on a truncated singular value decomposition (SVD) polynomial approximation of the nonlinearity and subsequent solution of the obtained approximate polynomial eigenproblem with the Jacobi-Davidson method

    The Induced Dimension Reduction Method Applied to Convection-Diffusion-Reaction Problems

    Full text link
    Discretization of (linearized) convection-diusion-reaction problems yields<br/>a large and sparse non symmetric linear system of equations,<br/>Ax = b: (1)<br/>In this work, we compare the computational behavior of the Induced Dimension<br/>Reduction method (IDR(s)) [10], with other short-recurrences Krylov methods,<br/>specically the Bi-Conjugate Gradient Method (Bi-CG) [1], restarted Generalized<br/>Minimal Residual (GMRES(m)) [4], and Bi-Conjugate Gradient Stabilized method<br/>(Bi-CGSTAB) [11].<br/

    Lessons from the financial crisis: Funded pension funds should invest conservatively

    Get PDF
    We model a three-pillar pension system and analyse in this context the impact of the financial crisis on the aggregate economy, using an overlapping generations model where individuals live for two periods. The system consists of (1) a PAYG pension system, (2) a Defined Benefit pension fund, and (3) private savings. We show that in this pension system the impact of the financial crisis on the economy is mitigated in case the funded pension funds have invested in more risk averse assets and savings are invested in more risky assets. In order to illustrate the working of the model with respect to the impact of the financial crisis, both in terms of size and development over time, we provide simulation results for the Netherlands. We argue that the lesson from the financial crisis is that pension funds should always invest in relatively risk-free assets, while private savings can be invested in more risky assets.macroeconomics ;

    Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver

    Full text link
    In the numerical solution of large-scale eigenvalue problems, Davidson-type methods are an increasingly popular alternative to Krylov eigensolvers. The main motivation is to avoid the expensive factorizations that are often needed by Krylov solvers when the problem is generalized or interior eigenvalues are desired. In Davidson-type methods, the factorization is replaced by iterative linear solvers that can be accelerated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants. However, parallel implementations of this method are not widely available, particularly for non-symmetric problems. We present a parallel implementation that has been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations, and test it in the context of a highly scalable plasma turbulence simulation code. We analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver. © 2011 John Wiley and Sons, Ltd..The authors are indebted to Florian Merz for providing us with the test cases and for his useful suggestions. The authors acknowledge the computer resources provided by the Barcelona Supercomputing Center (BSC). This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519.Romero Alcalde, E.; Román Moltó, JE. (2011). Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver. Concurrency and Computation: Practice and Experience. 23:2179-2191. https://doi.org/10.1002/cpe.1740S2179219123Hochstenbach, M. E., & Notay, Y. (2009). Controlling Inner Iterations in the Jacobi–Davidson Method. SIAM Journal on Matrix Analysis and Applications, 31(2), 460-477. doi:10.1137/080732110Heuveline, V., Philippe, B., & Sadkane, M. (1997). Numerical Algorithms, 16(1), 55-75. doi:10.1023/a:1019126827697Arbenz, P., Bečka, M., Geus, R., Hetmaniuk, U., & Mengotti, T. (2006). On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Computing, 32(2), 157-165. doi:10.1016/j.parco.2005.06.005Genseberger, M. (2010). Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi–Davidson method for large scale eigenvalue problems. Applied Numerical Mathematics, 60(11), 1083-1099. doi:10.1016/j.apnum.2009.07.004Stathopoulos, A., & McCombs, J. R. (2010). PRIMME. ACM Transactions on Mathematical Software, 37(2), 1-30. doi:10.1145/1731022.1731031Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., & Thornquist, H. K. (2009). Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on Mathematical Software, 36(3), 1-23. doi:10.1145/1527286.1527287Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Romero, E., Cruz, M. B., Roman, J. E., & Vasconcelos, P. B. (2011). A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices. High Performance Computing for Computational Science – VECPAR 2010, 380-393. doi:10.1007/978-3-642-19328-6_35Romero, E., & Roman, J. E. (2010). A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code. Lecture Notes in Computer Science, 101-112. doi:10.1007/978-3-642-15291-7_11Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). (1846). Journal für die reine und angewandte Mathematik (Crelles Journal), 1846(30), 51-94. doi:10.1515/crll.1846.30.51G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427Fokkema, D. R., Sleijpen, G. L. G., & Van der Vorst, H. A. (1998). Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils. SIAM Journal on Scientific Computing, 20(1), 94-125. doi:10.1137/s1064827596300073Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154-156, 289-309. doi:10.1016/0024-3795(91)90381-6Paige, C. C., Parlett, B. N., & van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2(2), 115-133. doi:10.1002/nla.1680020205Stathopoulos, A., Saad, Y., & Wu, K. (1998). Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods. SIAM Journal on Scientific Computing, 19(1), 227-245. doi:10.1137/s1064827596304162Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936Balay S Buschelman K Eijkhout V Gropp W Kaushik D Knepley M McInnes LC Smith B Zhang H PETSc users manual 2010Hernandez, V., Roman, J. E., & Tomas, A. (2007). Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Computing, 33(7-8), 521-540. doi:10.1016/j.parco.2007.04.004Dannert, T., & Jenko, F. (2005). Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Physics of Plasmas, 12(7), 072309. doi:10.1063/1.1947447Roman, J. E., Kammerer, M., Merz, F., & Jenko, F. (2010). Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 36(5-6), 339-358. doi:10.1016/j.parco.2009.12.001Merz, F., & Jenko, F. (2010). Nonlinear interplay of TEM and ITG turbulence and its effect on transport. Nuclear Fusion, 50(5), 054005. doi:10.1088/0029-5515/50/5/054005Simoncini, V., & Szyld, D. B. (2002). Flexible Inner-Outer Krylov Subspace Methods. SIAM Journal on Numerical Analysis, 40(6), 2219-2239. doi:10.1137/s0036142902401074Morgan, R. B. (2002). GMRES with Deflated Restarting. SIAM Journal on Scientific Computing, 24(1), 20-37. doi:10.1137/s106482759936465

    Alternative correction equations in the Jacobi-Davidson method

    Get PDF
    The correction equation in the Jacobi-Davidson method is effective in a subspace orthogonal to the current eigenvector approximation, whereas for the continuation of the process only vectors orthogonal to the search subspace are of importance. Such a vector is obtained by orthogonalizing the (approximate) solution of the correction equation against the search subspace. As an alternative, a variant of the correction equation can be formulated that is restricted to the subspace orthogonal to the current search subspace. In this paper, we discuss the effectiveness of this variant. Our investigation is also motivated by the fact that the restricted correction equation can be used for avoiding stagnation in case of defective eigenvalues. Moreover, this equation plays a key role in the inexact TRQ method [18]

    Accurate approximations to eigenpairs using the harmonic Rayleigh Ritz Method

    Get PDF
    The problem in this paper is to construct accurate approximations from a subspace to eigenpairs for symmetric matrices using the harmonic Rayleigh-Ritz method. Morgan introduced this concept in [14] as an alternative forRayleigh-Ritz in large scale iterative methods for computing interior eigenpairs. The focus rests on the choice and in uence of the shift and error estimation. We also give a discussion of the dierences and similarities with the rened Ritz approach for symmetric matrices. Using some numerical experiments we compare dierent conditions for selecting appropriate harmonic Ritz vectors
    corecore