26 research outputs found

    Overview of PHENIX results from the first RHIC run

    Get PDF
    Results from the PHENIX experiment for the first RHIC run with Au-Au collisions at roots(NN) = 130 GeV are presented. The systematic variation with centrality of charged particle multiplicity, transverse energy, elliptic flow, identified particle spectra and yield ratios, and production of charged particles and pi(0)\u27s at high transverse momenta are presented. Results on two-pion correlations and electron spectra are also provided, along with a discussion of plans for the second run at RHIC

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV Îł\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    PHENIX detector overview

    Get PDF
    The PHENIX detector is designed to perform a broad study of A–A, p–A, and p–p collisions to investigate nuclear matter under extreme conditions. A wide variety of probes, sensitive to all timescales, are used to study systematic variations with species and energy as well as to measure the spin structure of the nucleon. Designing for the needs of the heavy-ion and polarized-proton programs has produced a detector with unparalleled capabilities. PHENIX measures electron and muon pairs, photons, and hadrons with excellent energy and momentum resolution. The detector consists of a large number of subsystems that are discussed in other papers in this volume. The overall design parameters of the detector are presented.This is a manuscript of an article from Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 499 (2003): 469, doi:10.1016/S0168-9002(02)01950-2. Posted with permission.</p
    corecore