13 research outputs found
Recommended from our members
Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)
The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates
Recommended from our members
Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint
A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control
Dew Point Evaporative Comfort Cooling: Report and Summary Report
The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado
Recommended from our members
Evaluating the Performance and Economics of Transpired Solar Collectors for Commercial Applications: Preprint
Using transpired solar collectors to preheat ventilation air has recently become recognized as an economic alternative for integrating renewable energy into commercial buildings in heating climates. The collectors have relatively low installed costs and operate on simple principles. Theory and performance testing have shown that solar collection efficiency can exceed 70% of incident solar. However, implementation and current absorber designs have adversely affected the efficiency and associated economics from this initial analysis. The National Renewable Energy Laboratory has actively studied this technology and monitored performance at several installations. A calibrated model that uses typical meteorological weather data to determine absorber plate efficiency resulted from this work. With this model, an economic analysis across heating climates was done to show the effects of collector size, tilt, azimuth, and absorptivity. The analysis relates the internal rate of return of a system based on the cost of the installed absorber area. In general, colder and higher latitude climates return a higher rate of return because the heating season extends into months with good solar resource
Recommended from our members
Advanced Desiccant Cooling and Dehumidification Program
The use of dessicant materials for cooling and dehumidification is an effective, economical, environmentally safe method for meeting indoor air quality standards established by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). To maximize the technology's potential for reducing energy consumption and improving indoor air quality, DOE established the Advanced Desiccant Cooling and Dehumidification Program. The National Renewable Energy Laboratory partners with industry to support and educate industry users, as well as to support technology transfer and benchmark current performance
Recommended from our members
Instrument uncertainty effect on calculation of absolute humidity using dewpoint, wet-bulb, and relative humidity sensors
As part of the US Department of Energy`s Advanced Desiccant Technology Program, the National Renewable Energy Laboratory (NREL) is characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The experimental data will provide industry and end users with independent performance evaluation and help researchers assess the energy savings potential of the technology. Accurate determination of humidity ratio is critical to this work and an understanding of the capabilities of the available instrumentation is central to its proper application. This paper compares the minimum theoretical random error in humidity ratio calculation for three common measurement methods to give a sense of the relative maximum accuracy possible for each method assuming systematic errors can be made negligible. A series of experiments conducted also illustrate the capabilities of relative humidity sensors as compared to dewpoint sensors in measuring the grain depression of desiccant dehumidifiers. These tests support the results of the uncertainty analysis. At generally available instrument accuracies, uncertainty in calculated humidity ratio for dewpoint sensors is determined to be constant at approximately 2%. Wet-bulb sensors range between 2% and 6% above 10 g/kg (4%--15% below), and relative humidity sensors vary between 4% above 90% rh and 15% at 20% rh. Below 20% rh, uncertainty for rh sensors increases dramatically. Highest currently attainable accuracies bring dewpoint instruments down to 1% uncertainty, wet bulb to a range of 1%--3% above 10 g/kg (1.5%--8% below), and rh sensors between 1% and 5%
Recommended from our members
Experimental evaluation of commercial desiccant dehumidifier wheels
The National Renewable Energy Laboratory is currently characterizing the state-of-the-art in desiccant dehumidifiers, the key component of desiccant cooling systems. The data are being obtained in our HVAC Equipment Test Facility in accordance with the proposed ASHRAE test standard. The experimental data will provide industry and end users with independent performance evaluation and the United States Department of Energy and NREL with the information necessary to assess advances in the energy savings potential of the technology. This paper proposes several figures of merit for evaluating performance. The results of these tests indicate that dehumidification capacity performance parameters can be correlated to process inlet air relative humidity
Recommended from our members
Dew Point Evaporative Comfort Cooling: Report and Summary Report
The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado