3,140 research outputs found
Biases in Expansion Distances of Novae Arising from the Prolate Geometry of Nova Shells
(abridged) Expansion distances (or expansion parallaxes) for classical novae
are based on comparing a measurement of the shell expansion velocity,
multiplied by the time since outburst, with some measure of the angular size of
the shell. We review and formalize this method in the case of prolate
spheroidal shells. We present expressions for the maximum line-of-sight
velocity from a complete, expanding shell and for its projected major and minor
axes, in terms of the intrinsic axis ratio and the inclination of the polar
axis to the line of sight. For six distinct definitions of ``angular size'', we
tabulate the error in distance that is introduced under the assumption of
spherical symmetry (i.e., without correcting for inclination and axis ratio).
The errors can be significant and systematic, affecting studies of novae
whether considered individually or statistically. Each of the six estimators
overpredicts the distance when the polar axis is close to the line of sight,
and most underpredict the distance when the polar axis is close to the plane of
the sky. The straight mean of the projected semimajor and semiminor axes gives
the least distance bias for an ensemble of randomly oriented prolate shells.
The best individual expansion distances, however, result from a full
spatio-kinematic modeling of the nova shell. We discuss several practical
complications that affect expansion distance measurements of real nova shells.
Nova shell expansion distances be based on velocity and angular size
measurements made contemporaneously if possible, and the same ions and
transitions should be used for the imaging and velocity measurements. We
emphasize the need for complete and explicit reporting of measurement
procedures and results, regardless of the specific method used.Comment: 21 pages, LaTeX, uses aasms4.sty, to be published in Publ. Astron.
Soc. of the Pacific, May 200
AlGaAs heterojunction lasers
The characterization of 8300 A lasers was broadened, especially in the area of beam quality. Modulation rates up to 2 Gbit/sec at output powers of 20 mW were observed, waveform fidelity was fully adequate for low BER data transmission, and wavefront measurements showed that phase aberrations were less than lamda/50. Also, individually addressable arrays of up to ten contiguous diode lasers were fabricated and tested. Each laser operates at powers up to 30 mW CW in single spatial mode. Shifting the operating wavelength of the basic CSP laser from 8300 A to 8650 A was accomplished by the addition of Si to the active region. Output power has reached 100 mW single mode, with excellent far field wave front properties. Operating life is currently approx. 1000 hrs at 35 mW CW. In addition, laser reliability, for operation at both 8300 A and 8650 A, has profited significantly from several developments in the processing procedures
Farewell, Prosperity!
https://digitalcommons.library.umaine.edu/mmb-vp/3898/thumbnail.jp
High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications
A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described
Non-resonant wave front reversal of spin waves used for microwave signal processing
It is demonstrated that non-resonant wave front reversal (WFR) of spin-wave
pulses caused by pulsed parametric pumping can be effectively used for
microwave signal processing. When the frequency band of signal amplification by
pumping is narrower than the spectral width of the signal, the non-resonant WFR
can be used for the analysis of the signal spectrum. In the opposite case the
non-resonant WFR can be used for active (with amplification) filtering of the
input signal.Comment: 4 pages, 3 figure
Generation of spin-wave dark solitons with phase engineering
We generate experimentally spin-wave envelope dark solitons from rectangular
high-frequency dark input pulses with externally introduced phase shifts in
yttrium-iron garnet magnetic fims. We observe the generation of both odd and
even numbers of magnetic dark solitons when the external phase shift varies.
The experimental results are in a good qualitative agreement with the theory of
the dark-soliton generation in magnetic films developed earlier [Phys. Rev.
Lett. 82, 2583 (1999)].Comment: 6 pages, including 7 figures, submitted to Phys. Rev.
- …