210 research outputs found

    Study of the Pioneer Anomaly: A Problem Set

    Full text link
    Analysis of the radio-metric tracking data from the Pioneer 10 and 11 spacecraft at distances between 20--70 astronomical units from the Sun has consistently indicated the presence of an anomalous, small, and constant Doppler frequency drift. The drift is a blue-shift, uniformly changing at the rate of (5.99 +/- 0.01) x 10^{-9} Hz/s. The signal also can be interpreted as a constant acceleration of each particular spacecraft of (8.74 +/- 1.33) x 10^{-8} cm/s^2 directed toward the Sun. This interpretation has become known as the Pioneer anomaly. We provide a problem set based on the detailed investigation of this anomaly, the nature of which remains unexplained.Comment: 14 pages, 3 figures, 5 tables, minor corrections before publicatio

    A Search for New Physics with the BEACON Mission

    Full text link
    The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around Earth. This curvature is characterized by the Eddington parameter \gamma -- the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 x 10^{-9} in measuring the parameter \gamma, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the "frame-dragging" and geodetic precessions in the Earth's rotational gravitomagnetic field, to 0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravity's non-linear effects on light and corresponding 2nd order spatial metric's effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics -- this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in physics. BEACON will provide crucial information to separate modern scalar-tensor theories of gravity from general relativity, probe possible ways for gravity quantization, and test modern theories of cosmological evolution.Comment: 8 pages, 2 figures, 2 table

    The Effect of Companions on the SIM Reference Frame

    Get PDF
    The Space Interferometry Mission (SIM) is a 10-m Michelson space-based optical interferometer designed for precision astrometry (4 microarcseconds, 3 microarcseconds/year) with better accuracy than before over a narrow field of view. One of the primary objectives of the SIM instrument is to determine accurately the directions to a grid of stars, together with their proper motions and parallax, improving a priori knowledge by nearly three orders of magnitude over Hipparcos and one order of magnitude over FAME's planned accuracy (Johnston, 2000). The instrument does not measure directly the angular separation between stars, but rather it measures the projection of each star's direction vector onto the interferometer baseline vector by measuring the pathlength delay of starlight as it passes through the two arms of the interferometer. The accuracy and stability of SIM's celestial reference frame is subject to degradation over the 5-year mission from the reflex motion induced by massive companions of the objects used to construct the celestial reference frame. The authors present the results of simulations that show the sensitivity of reference frame accuracy to companions as a function of mass and period. They assume that pre-launch ground surveys will eliminate all objects with RMS radial velocity greater than 10 m/s. They further assume that the standard astrometric parameters of position, parallax, and proper motion plus acceleration terms in right ascension and declination will be allowed to absorb reflex motion

    Структурна парадигма збалансованості інструментів підтримки економічного розвитку регіону (STRUCTURAL PARADIGM OF BALANCING THE SUPPORTIVE TOOLS FOR ECONOMIC DEVELOPMENT OF THE REGION)

    Get PDF
    У статті побудовано концептуальну схему взаємодії інструментів економічного розвитку (бюджетно-фінансових інструментів, інструментів інституційного забезпечення, інструментів підвищення конкурентоспроможності, інстру- ментів інтеграції і взаємодії органів влади) на різних рівнях (державному, регіональному – обласному, субрегіональному – рівень міста, селища, села). Розкрито теоретичну парадигму збалансованості даних інструментів. У дослідженні представлено кількісний та структурний аналіз інструментів регіонального економічного розвитку та засобів їх реалізації на усіх рівнях (регіональний, субрегіональний та в цілому). Виявлено кількісні диспропорції між інструментами, що застосовуються для місцевого економічного розвитку в Україні. Вироблено пропозиції щодо вимірювання показників наскрізної збалансованості при формуванні системи інструментів підтримки економічного розвитку на різних рівнях. (The article is based on developed conceptual scheme of interaction tools of economic development (fiscal instrument, institutional support, tools, competition and tools integration and interaction of) at different levels (national, regional – re-gional, subregional – level city, town, village). The theoretical balance paradigm of these tools is described and developed. The study presents quantitative and structural analysis of tools for regional economic development and the means of their implementation at all levels (regional, subegional and overall). The quantitative disparities between the tools used for local economic development in Ukraine are found out. The proposals for measurement of pass-through balance in the formation of the supportive tools for economic development at different levels are elaborated.

    Facilitating flexible problem solving: A cognitive load perspective

    Get PDF
    The development of flexible, transferable problem-solving skills is an important aim of contemporary educational systems. Since processing limitations of our mind represent a major factor influencing any meaningful learning, the acquisition of flexible problem-solving skills needs to be based on known characteristics of our cognitive architecture in order to be effective and efficient. This paper takes a closer look at the processes involved in the acquisition of flexible problem-solving skills within a cognitive load framework. It concludes that (1) cognitive load theory can benefit from putting more emphasis on generalized knowledge structures; (2

    The Apparent Anomalous, Weak, Long-Range Acceleration of Pioneer 10 and 11

    Get PDF
    Recently we reported that radio Doppler data generated by NASA's Deep Space Network (DSN) from the Pioneer 10 and 11 spacecraft indicate an apparent anomalous, constant, spacecraft acceleration with a magnitude 8.5×108\sim 8.5\times 10^{-8} cm s2^{-2}, directed towards the Sun (gr-qc/9808081). Analysis of similar Doppler and ranging data from the Galileo and Ulysses spacecraft yielded ambiguous results for the anomalous acceleration, but it was useful in that it ruled out the possibility of a systematic error in the DSN Doppler system that could easily have been mistaken as a spacecraft acceleration. Here we present some new results, including a critique suggestions that the anomalous acceleration could be caused by collimated thermal emission. Based partially on a further data for the Pioneer 10 orbit determination, the data now spans January 1987 to July 1998, our best estimate of the average Pioneer 10 acceleration directed towards the Sun is 7.5×108\sim 7.5 \times 10^{-8} cm s2^{-2}.Comment: Latex, 7 pages and 2 figures. Invited talk at the XXXIV-th Rencontres de Moriond Meeting on Gravitational Waves and Experimental Gravity. Les Arcs, Savoi, France (January 23-30,1999). Corrected typo

    Transport in Nanotubes: Effect of Remote Impurity Scattering

    Full text link
    Theory of the remote Coulomb impurity scattering in single--wall carbon nanotubes is developed within one--electron approximation. Boltzmann equation is solved within drift--diffusion model to obtain the tube conductivity. The conductivity depends on the type of the nanotube bandstructure (metal or semiconductor) and on the electron Fermi level. We found exponential dependence of the conductivity on the Fermi energy due to the Coulomb scattering rate has a strong dependence on the momentum transfer. We calculate intra-- and inter--subband scattering rates and present general expressions for the conductivity. Numerical results, as well as obtained analytical expressions, show that the degenerately doped semiconductor tubes may have very high mobility unless the doping level becomes too high and the inter--subband transitions impede the electron transport.Comment: 13 pages, 4 figure
    corecore