4 research outputs found

    Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples

    Get PDF
    Rapid antimicrobial susceptibility testing (AST) is urgently needed for informing treatment decisions and preventing the spread of antimicrobial resistance resulting from the misuse and overuse of antibiotics. To date, no phenotypic AST exists that can be performed within a single patient visit (30 min) directly from clinical samples. We show that AST results can be obtained by using digital nucleic acid quantification to measure the phenotypic response of Escherichia coli present within clinical urine samples exposed to an antibiotic for 15 min. We performed this rapid AST using our ultrafast (~7 min) digital real-time loop-mediated isothermal amplification (dLAMP) assay [area under the curve (AUC), 0.96] and compared the results to a commercial (~2 hours) digital polymerase chain reaction assay (AUC, 0.98). The rapid dLAMP assay can be used with SlipChip microfluidic devices to determine the phenotypic antibiotic susceptibility of E. coli directly from clinical urine samples in less than 30 min. With further development for additional pathogens, antibiotics, and sample types, rapid digital AST (dAST) could enable rapid clinical decision-making, improve management of infectious diseases, and facilitate antimicrobial stewardship

    Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples

    Get PDF
    Rapid antimicrobial susceptibility testing (AST) is urgently needed for informing treatment decisions and preventing the spread of antimicrobial resistance resulting from the misuse and overuse of antibiotics. To date, no phenotypic AST exists that can be performed within a single patient visit (30 min) directly from clinical samples. We show that AST results can be obtained by using digital nucleic acid quantification to measure the phenotypic response of Escherichia coli present within clinical urine samples exposed to an antibiotic for 15 min. We performed this rapid AST using our ultrafast (~7 min) digital real-time loop-mediated isothermal amplification (dLAMP) assay [area under the curve (AUC), 0.96] and compared the results to a commercial (~2 hours) digital polymerase chain reaction assay (AUC, 0.98). The rapid dLAMP assay can be used with SlipChip microfluidic devices to determine the phenotypic antibiotic susceptibility of E. coli directly from clinical urine samples in less than 30 min. With further development for additional pathogens, antibiotics, and sample types, rapid digital AST (dAST) could enable rapid clinical decision-making, improve management of infectious diseases, and facilitate antimicrobial stewardship

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality
    corecore