3,897 research outputs found

    Sustained high-level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques

    Get PDF
    The feasibility, safety, and efficacy of liver-directed gene transfer was evaluated in 5 male macaques (aged 2.5 to 6.5 years) by using a recombinant adeno-associated viral (rAAV) vector (rAAV-2 CAGG-hFIX) that had previously mediated persistent therapeutic expression of human factor IX (hFIX; 6%-10% of physiologic levels) in murine models. A dose of 4 × 1012 vector genomes (vgs)/kg of body weight was administered through the hepatic artery or portal vein. Persistence of the rAAV vgs as circular monomers and dimers and high-molecular-weight concatamers was documented in liver tissue by Southern blot analysis for periods of up to 1 year. Vector particles were present in plasma, urine, or saliva for several days after infusion (as shown by polymerase chain reaction analysis), and the vgs were detected in spleen tissue at low copy numbers. An enzyme-linked immunosorption assay capable of detecting between 1% and 25% of normal levels of hFIX in rhesus plasma was developed by using hyperimmune serum from a rhesus monkey that had received an adenoviral vector encoding hFIX. Two macaques having 3 and 40 rAAV genome equivalents/cell, respectively, in liver tissue had 4% and 8% of normal physiologic plasma levels of hFIX, respectively. A level of hFIX that was 3% of normal levels was transiently detected in one other macaque, which had a genome copy number of 25 before abrogation by a neutralizing antibody (inhibitor) to hFIX. This nonhuman-primate model will be useful in further evaluation and development of rAAV vectors for gene therapy of hemophilia B. © 2002 by The American Society of Hematology

    Mobility of Vulnerable Elders (MOVE): study protocol to evaluate the implementation and outcomes of a mobility intervention in long-term care facilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Almost 90% of residents living in long-term care facilities have limited mobility which is associated with a loss of ability in activities of daily living, falls, increased risk of serious medical problems such as pressure ulcers, incontinence and a significant decline in health-related quality of life. For health workers caring for residents it may also increase the risk of injury. The effectiveness of rehabilitation to facilitate mobility has been studied with dedicated research assistants or extensively trained staff caregivers; however, few investigators have examined the effectiveness of techniques to encourage mobility by <it>usual caregivers </it>in long-term care facilities.</p> <p>Methods/Design</p> <p>This longitudinal, quasi-experimental study is designed to demonstrate the effect of the sit-to-stand activity carried out by residents in the context of daily care with health care aides. In three intervention facilities health care aides will prompt residents to repeat the sit-to-stand action on two separate occasions during each day and each evening shift as part of daily care routines. In three control facilities residents will receive usual care. Intervention and control facilities are matched on the ownership model (public, private for-profit, voluntary not-for-profit) and facility size. The dose of the mobility intervention is assessed through the use of daily documentation flowsheets in the health record. Resident outcome measures include: 1) the 30-second sit-to-stand test; 2) the <it>Functional Independence Measure</it>; 3) the <it>Health Utilities Index Mark 2 and 3; </it>and, 4) the <it>Quality of Life - Alzheimer's Disease</it>.</p> <p>Discussion</p> <p>There are several compelling reasons for this study: the widespread prevalence of limited mobility in this population; the rapid decline in mobility after admission to a long-term care facility; the importance of mobility to quality of life; the increased time (and therefore cost) required to care for residents with limited mobility; and, the increased risk of injury for health workers caring for residents who are unable to stand. The importance of these issues is magnified when considering the increasing number of people living in long-term care facilities and an aging population.</p> <p>Trial Registration</p> <p>This clinical trial is registered with ClinicalTrials.gov (trial registration number: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01474616">NCT01474616</a>).</p

    Transapical miniaturized ventricular assist device: Design and initial testing

    Get PDF
    BackgroundLeft ventricular assist devices are increasingly used to treat patients with advanced and otherwise refractory heart failure as bridge to transplant or destination therapy. We evaluated a new miniaturized left ventricular assist device that requires minimal surgery for implantation, potentially allowing implantation in earlier stage heart failure.MethodsHeartWare (Miami Lakes, Fla) developed transapical miniaturized ventricular assist device. Acute (n = 4), 1-week (n = 2), and 30-day (n = 4) bovine model experiments evaluated hemodynamic efficacy and biocompatibility of the device, which was implanted through small left thoracotomy with single insertion at apex of left ventricle without cardiopulmonary bypass. The device outflow cannula was positioned across the aortic valve. The international normalized ratio was maintained between 2.0 and 2.5 with warfarin. Hemodynamic, echocardiographic, fluoroscopic, hematologic, and blood chemistry measurements were evaluated.ResultsThe device was successfully implanted through the left ventricular apex in all 10 animals. The device was operated at 15,000 ± 1000 rpm (power consumption, 3.5–6.0 W). The device maintained normal end-organ perfusion with no significant hemolysis (0–30 mg/dL). There were no pump failures or device-related complications. At autopsy, no abnormalities were seen in endocardium, aortic valve leaflets, or aortic root. There was no evidence of thromboembolism or abnormalities in any peripheral end organs.ConclusionsWe successfully demonstrated feasibility of a novel intraventricular assist device that can be completely implanted through left ventricular apex. This transapical surgical approach eliminates needs for sternotomy, device pocket, cardiopulmonary bypass, ventricular coring, and construction of an outflow graft anastomosis

    Civil society and financial markets : what is not happening and why

    Get PDF
    Why have commercial financial flows – as a major force in contemporary society with a number of significant problematic consequences – attracted relatively little effective public-interest response from civil society? Change-oriented NGOs, labour unions, faith-based organisations and other social movements have mostly remained in the shadows vis-à-vis private financial markets. Impacts from these citizen associations have not gone beyond promoting modest rises in public awareness, certain limited policy shifts, and minor institutional reforms of a few public governance agencies. The reasons for these scant achievements are partly related to capacities and practices in civil society groups, relevant governance agencies, and financial firms. Also important in constraining civil society impacts to reform and transform contemporary financial markets are deeper structural circumstances such as embedded social hierarchies (among countries, classes, etc.), the pivotal role of finance capital in accumulation processes today, and the entrenchment of prevailing neoliberal policy discourses

    Three-dimensional structure of an immunoglobulin light-chain dimer with amyloidogenic properties

    Get PDF
    The X-ray structure of an immunoglobulin light-chain dimer isolated from the urine as a 'Bence-Jones protein' from a patient with multiple myeloma and amyloidosis (Sea) was determined at 1.94 Angstrom resolution and refined to R and R-free factors of 0.22 and 0.25, respectively. This 'amyloidogenic' protein crystallized in the orthorhombic P2(1)2(1)2(1) space group with unit-cell parameters a=48.28, b=83.32, c=112.59 Angstrom as determined at 100 K. In the vital organs (heart and kidneys), the equivalent of the urinary protein produced fibrillar amyloid deposits which were fatal to the patient. Compared with the amyloidogenic Mcg light-chain dimer, the Sea protein was highly soluble in aqueous solutions and only crystallized at concentrations approaching 100 mg ml(-1). Both the Sea and Mcg proteins packed into crystals in highly ordered arrangements typical of strongly diffracting crystals of immunoglobulin fragments. Overall similarities and significant differences in the three-dimensional structures and crystalline properties are discussed for the Sea and Mcg Bence-Jones proteins, which together provide a generalized model of abnormalities present in lambda chains, facilitating a better understanding of amyloidosis of light-chain origin (AL)

    Patenting and licensing of university research: promoting innovation or undermining academic values?

    Get PDF
    Since the 1980s in the US and the 1990s in Europe, patenting and licensing activities by universities have massively increased. This is strongly encouraged by governments throughout the Western world. Many regard academic patenting as essential to achieve 'knowledge transfer' from academia to industry. This trend has far-reaching consequences for access to the fruits of academic research and so the question arises whether the current policies are indeed promoting innovation or whether they are instead a symptom of a pro-intellectual property (IP) culture which is blind to adverse effects. Addressing this question requires both empirical analysis (how real is the link between academic patenting and licensing and 'development' of academic research by industry?) and normative assessment (which justifications are given for the current policies and to what extent do they threaten important academic values?). After illustrating the major rise of academic patenting and licensing in the US and Europe and commenting on the increasing trend of 'upstream' patenting and the focus on exclusive as opposed to non-exclusive licences, this paper will discuss five negative effects of these trends. Subsequently, the question as to why policymakers seem to ignore these adverse effects will be addressed. Finally, a number of proposals for improving university policies will be made

    A Fully-Flexible Solution-Processed Autonomous Glucose Indicator

    Get PDF
    We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM-45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries

    Driving calmodulin protein towards conformational shift by changing ionization states of select residues

    Get PDF
    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes

    Relationships between overweight, obesity and physical fitness of nine- to twelve-year-old South African children

    Get PDF
    Background: South African children show the same tendencies in overweight and obesity as children in developed countries a decade ago. Childhood overweight is associated with chronic diseases, early mortality in adulthood and psycho-social effects with lifelong consequences. This study aimed to determine relationships between overweight, obesity and physical fitness of nine- to twelve-year-old South African children. Methods: Anthropometric (body-mass index [BMI], fat percentage) and physical fitness (cardiovascular endurance, body composition, muscle strength, muscle endurance, flexibility) measurements were obtained from 280 children aged nine to twelve years (128 boys, 152 girls) using the Fitnessgram and Bruininks-Oseretsky Test of Motor Proficiency II. International cut-off points were used to categorise children into normal-weight, overweight or obese categories. Data were analysed using descriptive statistics, Spearman rank order correlation and variance of analysis. Results: One in five children was overweight or obese, while girls were twice as likely as boys to be obese. Aerobic capacity and muscle strength, especially leg strength, decreased progressively with an increase in BMI. A progressive but nonsignificant decline was found in muscle endurance with increasing BMI, while flexibility showed the poorest relationships with various degrees of weight. Variance of analysis indicated significant relationships between BMI, cardiovascular endurance and strength (p < 0.05), while different relationships were found when gender was taken into consideration. Conclusions: Health-enhancing physical fitness of young children is negatively affected by overweight and obesity, and intervention strategies are recommended to improve the quality of life of such childre,n but also to prevent early mortality during adulthood.Keywords: overweight; obesity; children; gender; physical fitnes
    corecore