524 research outputs found
Validation of a fully autonomous phosphate analyser based on a microfluidic lab-on-a-chip
This work describes the design of a phosphate analyser that utilises a microfluidic lab-on-a-chip. The analyser contains all the required chemical storage, pumping and electronic components to carry out a complete phosphate assay. The system is self-calibrating and self-cleaning, thus capable of long-term operation. This was proven by a bench top calibration of the analyser using standard solutions and also by comparing the analyser's performance to a commercially available phosphate monitor installed at a waste water treatment plant. The output of the microfluidic lab-on-a-chip analyser was shown to have sensitivity and linear range equivalent to the commercially available monitor and also the ability to operate over an extended period of time
Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys
For a wide class of technologically relevant compound III-V and II-VI
semiconductor materials AC and BC mixed crystals (alloys) of the type
A(x)B(1-x)C can be realized. As the electronic properties like the bulk band
gap vary continuously with x, any band gap in between that of the pure AC and
BC systems can be obtained by choosing the appropriate concentration x, granted
that the respective ratio is miscible and thermodynamically stable. In most
cases the band gap does not vary linearly with x, but a pronounced bowing
behavior as a function of the concentration is observed. In this paper we show
that the electronic properties of such A(x)B(1-x)C semiconductors and, in
particular, the band gap bowing can well be described and understood starting
from empirical tight binding models for the pure AC and BC systems. The
electronic properties of the A(x)B(1-x)C system can be described by choosing
the tight-binding parameters of the AC or BC system with probabilities x and
1-x, respectively. We demonstrate this by exact diagonalization of finite but
large supercells and by means of calculations within the established coherent
potential approximation (CPA). We apply this treatment to the II-VI system
Cd(x)Zn(1-x)Se, to the III-V system In(x)Ga(1-x)As and to the III-nitride
system Ga(x)Al(1-x)N.Comment: 14 pages, 10 figure
The Van der Waals interaction of the hydrogen molecule - an exact local energy density functional
We verify that the van der Waals interaction and hence all dispersion
interactions for the hydrogen molecule given by: W"= -{A/R^6}-{B/R^8}-{C/R^10}-
..., in which R is the internuclear separation, are exactly soluble. The
constants A=6.4990267..., B=124.3990835 ... and C=1135.2140398... (in Hartree
units) first obtained approximately by Pauling and Beach (PB) [1] using a
linear variational method, can be shown to be obtainable to any desired
accuracy via our exact solution. In addition we shall show that a local energy
density functional can be obtained, whose variational solution rederives the
exact solution for this problem. This demonstrates explicitly that a static
local density functional theory exists for this system. We conclude with
remarks about generalising the method to other hydrogenic systems and also to
helium.Comment: 11 pages, 13 figures and 28 reference
Crystal Structures and Electronic Properties of Haloform-Intercalated C60
Using density functional methods we calculated structural and electronic
properties of bulk chloroform and bromoform intercalated C60, C60 2CHX3
(X=Cl,Br). Both compounds are narrow band insulator materials with a gap
between valence and conduction bands larger than 1 eV. The calculated widths of
the valence and conduction bands are 0.4-0.6 eV and 0.3-0.4 eV, respectively.
The orbitals of the haloform molecules overlap with the orbitals of the
fullerene molecules and the p-type orbitals of halogen atoms significantly
contribute to the valence and conduction bands of C60 2CHX3. Charging with
electrons and holes turns the systems to metals. Contrary to expectation, 10 to
20 % of the charge is on the haloform molecules and is thus not completely
localized on the fullerene molecules. Calculations on different crystal
structures of C60 2CHCl3 and C60 2CHBr3 revealed that the density of states at
the Fermi energy are sensitive to the orientation of the haloform and C60
molecules. At a charging of three holes, which corresponds to the
superconducting phase of pure C60 and C60 2CHX3, the calculated density of
states (DOS) at the Fermi energy increases in the sequence DOS(C60) < DOS(C60
2CHCl3) < DOS(C60 2CHBr3).Comment: 11 pages, 7 figures, 4 table
Bonding in MgSi and AlMgSi Compounds Relevant to AlMgSi Alloys
The bonding and stability of MgSi and AlMgSi compounds relevant to AlMgSi
alloys is investigated with the use of (L)APW+(lo) DFT calculations. We show
that the and phases found in the precipitation sequence are
characterised by the presence of covalent bonds between Si-Si nearest neighbour
pairs and covalent/ionic bonds between Mg-Si nearest neighbour pairs. We then
investigate the stability of two recently discovered precipitate phases, U1 and
U2, both containing Al in addition to Mg and Si. We show that both phases are
characterised by tightly bound Al-Si networks, made possible by a transfer of
charge from the Mg atoms.Comment: 11 pages, 30 figures, submitted to Phys. Rev.
Mechanism of resonant x-ray magnetic scattering in NiO
We study the resonant x-ray magnetic scattering (RXMS) around the K edge of
Ni in the antiferromagnet NiO, by treating the 4p states of Ni as a band and
the 3d states as localized states. We propose a mechanism that the 4p states
are coupled to the magnetic order through the intra-atomic Coulomb interaction
between the 4p and the 3d states and through the p-d mixing to the 3d states of
neighboring Ni atoms. These couplings induce the orbital moment in the 4p band,
and thereby give rise to the RXMS intensity at the K edge in the dipolar
process. It is found that the spin-orbit interaction in the 4p band has
negligibly small contribution to the RXMS intensity. The present model
reproduces well the experimental spectra. We also discuss the azimuthal angle
dependence of the intensity.Comment: 10 pages (revtex) and 7 postscript figure
Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties
We present a tight-binding potential based on the moment expansion of the
density of states, which includes up to the fifth moment. The potential is
fitted to bcc and hcp Zr and it is applied to the computation of vibrational
properties of bcc-Zr. In particular, we compute the isothermal elastic
constants in the temperature range 1200K < T < 2000K by means of standard Monte
Carlo simulation techniques. The agreement with experimental results is
satisfactory, especially in the case of the stability of the lattice with
respect to the shear associated with C'. However, the temperature decrease of
the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr
are also computed. The potential predicts several instabilities of the bcc
structure, and a crossing of the longitudinal and transverse modes in the (001)
direction. This is in agreement with recent ab initio calculations in Sc, Ti,
Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the
isothermal elastic constants has been corrected (Eq. (4.1), Table VI and
Figure 4
Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory
We use first principles density functional theory to calculate electronic and
magnetic properties of TiF3 using the full potential linearized augmented plane
wave method. The LDA approximation predicts a fully saturated ferromagnetic
metal and finds degenerate energy minima for high and low symmetry structures.
The experimentally observed Jahn-Teller phase transition at Tc=370K can not be
driven by the electron-phonon interaction alone, which is usually described
accurately by LDA.
Electron correlations beyond LDA are essential to lift the degeneracy of the
singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are
important, the direction of the t2g-level splitting is determined by the
dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic
insulator with an orbitally ordered ground state. The input parameters U=8.1 eV
and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on
the TiF ion using the molecular NRLMOL code. We estimate the
Heisenberg exchange constant for spin-1/2 on a cubic lattice to be
approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per
TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.
A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems
Local-spin-density functional calculations may be affected by severe errors
when applied to the study of magnetic and strongly-correlated materials. Some
of these faults can be traced back to the presence of the spurious
self-interaction in the density functional. Since the application of a fully
self-consistent self-interaction correction is highly demanding even for
moderately large systems, we pursue a strategy of approximating the
self-interaction corrected potential with a non-local, pseudopotential-like
projector, first generated within the isolated atom and then updated during the
self-consistent cycle in the crystal. This scheme, whose implementation is
totally uncomplicated and particularly suited for the pseudopotental formalism,
dramatically improves the LSDA results for a variety of compounds with a
minimal increase of computing cost.Comment: 18 pages, 14 figure
Theory for Metal Hydrides with Switchable Optical Properties
Recently it has been discovered that lanthanum, yttrium, and other metal
hydride films show dramatic changes in the optical properties at the
metal-insulator transition. Such changes on a high energy scale suggest the
electronic structure is best described by a local model based on negatively
charged hydrogen (H) ions. We develop a many-body theory for the strong
correlation in a H ion lattice. The metal hydride is described by a large
-limit of an Anderson lattice model. We use lanthanum hydride as a prototype
of these compounds, and find LaH is an insulator with a substantial gap
consistent with experiments. It may be viewed either as a Kondo insulator or a
band insulator due to strong electron correlation. A H vacancy state in LaH
is found to be highly localized due to the strong bonding between the electron
orbitals of hydrogen and metal atoms. Unlike the impurity states in the usual
semiconductors, there is only weak internal optical transitions within the
vacancy. The metal-insulator transition takes place in a band of these vacancy
states.Comment: 18 pages, 16 figures and 6 tables. Submitted to PR
- …