1,548 research outputs found

    Relationships between surface and column aerosol radiative properties and air mass transport at a rural New England site

    Get PDF
    Version of RecordChemical, physical, and radiative properties of surface and vertical column aerosols were measured at a rural site in southern New Hampshire from July 2000 to September 2001. The primary objective was to determine how intensive and extensive aerosol properties vary in air masses originating in different upwind regions. The data set also allows for an investigation of some of the relationships between surface and column aerosol properties at the site, and provides an estimate of direct radiative forcing by aerosols during the study period. Extensive properties (e.g., optical depth and chemical concentration) were at maximum values during times of south-southwest (S-SW) transport, while minimum values were seen during north-northeast (N-NE) transport. Certain intensive properties such as fine particle mass scattering efficiency did not vary significantly between times of transport from different source regions. Mean optical depth (wavelength = 500 nm) was 0.24 during S-SW transport, compared to 0.10 during N-NE transport. The study period average scattering efficiency for (NH4)2SO4 was 6.54 ± 0.26 m2 g 1 (± standard error) and 3.36 ± 0.49 m2 g 1 for organic carbon, while the absorption efficiency of elemental carbon was 12.85 ± 0.80 m2 g 1. Top of the atmosphere aerosol direct radiative forcing was 0.35 ± 0.83 Wm 2 (±1 standard deviation) in winter 2000–2001 and 9.06 ± 3.77 Wm 2 in summer 2001, differences that can be primarily attributed to seasonal changes in surface reflectance (high in winter, low in summer) and the relatively low values of single scatter albedo observed in winter. The annual average direct radiative forcing was 5.14 ± 4.32 Wm 2. We generally observed a moderate correlation between surface and column aerosol light extinction, suggesting that vertical column aerosol radiative properties measured by surface-based radiometers should be supplemented by boundary layer measurements of aerosol chemical, physical, and radiative properties to help understand the mechanisms contributing to global aerosol variability.Slater, J. F., and J. E. Dibb (2004), Relationships between surface and column aerosol radiative properties and air mass transport at a rural New England site, J. Geophys. Res., 109, D01303, doi:10.1029/2003JD00340

    Manual synoptic climate classification for the East Coast of New England (USA) with an application to PM2.5 concentration

    Get PDF
    Version of RecordThis study presents a manual synoptic climate classification for the East Coast of New England with an application to regional pollution. New England weather was classified into 9 all-inclusive weather types: Canadian High, Modified High, Gulf of Maine Return, New England High, Atlantic Return, Frontal Atlantic Return, Frontal Overrunning-Continental, Frontal Overrun-ning-Marine, and Tropical Disturbance. Canadian High and Modified High weather are the domi-nant weather patterns at Boston, Massachusetts, while Tropical Disturbance, Gulf of Maine Return, and New England High weather types are the least frequent. Properties of the weather types were determined at 07:00 h Local Standard Time (LST) each day in Boston. The coldest and driest weather type is the Canadian High, while the hottest, most humid weather is generated by Frontal Atlantic Return. The synoptic weather classification system, applied to airborne fine particle mass concentra-tions with an aerodynamic diameter ≤2.5 μm (PM2.5), showed significant differences in concentra-tions between weather types: transport from the north and northwest had low PM2.5, while transport from the south and southwest had high PM2.5 concentrations. This climate classification system also has potential applications ranging from studies of insect migration to analyses of climate change.Keim, B. D., Meeker, L. D., & Slater, J. F. (2005). Manual synoptic climate classification for the East Coast of New England (USA) with an application to PM2.5 concentration. Climate Research, 28, 143-15

    AVHRR and VISSR satellite instrument calibration results for both Cirrus and marine stratocumulus IFO periods

    Get PDF
    Accurate characterizations of some cloud parameters are dependent upon the absolute accuracy of satellite radiance measurements. Visible wavelength measurements from both the AVHRR and VISSR instruments are often used to study cloud characteristics. Both of these instruments were radiometrically calibrated prior to launch, but neither has an onboard device to monitor degradation after launch. During the FIRE/SRB cirrus Intensive Field Operation (IFO), a special effort was made to monitor calibration of these two instruments onboard the NOAA-9 and GOES-6 spacecraft. In addition, several research groups have combined their efforts to assess the long-term performance of both instruments. These results are presented, and a limited comparison is made with the ERBE calibration standard

    Wastewater discharges and urban land cover dominate urban hydrology signals across England and Wales

    Get PDF
    Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow

    Resilience of UK crop yields to compound climate change

    Get PDF
    Recent extreme weather events have had severe impacts on UK crop yields, and so there is concern that a greater frequency of extremes could affect crop production in a changing climate. Here we investigate the impacts of future climate change on wheat, the most widely grown cereal crop globally, in a temperate country with currently favourable wheat-growing conditions. Historically, following the plateau of UK wheat yields since the 1990s, we find there has been a recent significant increase in wheat yield volatility, which is only partially explained by seasonal metrics of temperature and precipitation across key wheat growth stages (foundation, construction and production). We find climate impacts on wheat yields are strongest in years with compound weather extremes across multiple growth stages (e.g. frost and heavy rainfall). To assess how these conditions might evolve in the future, we analyse the latest 2.2 km UK Climate Projections (UKCP Local): on average, the foundation growth stage (broadly 1 October to 9 April) is likely to become warmer and wetter, while the construction (10 April to 10 June) and production (11 June to 26 July) stages are likely to become warmer and slightly drier. Statistical wheat yield projections, obtained by driving the regression model with UKCP Local simulations of precipitation and temperature for the UK's three main wheat-growing regions, indicate continued growth of crop yields in the coming decades. Significantly warmer projected winter night temperatures offset the negative impacts of increasing rainfall during the foundation stage, while warmer day temperatures and drier conditions are generally beneficial to yields in the production stage. This work suggests that on average, at the regional scale, climate change is likely to have more positive impacts on UK wheat yields than previously considered. Against this background of positive change, however, our work illustrates that wheat farming in the UK is likely to move outside of the climatic envelope that it has previously experienced, increasing the risk of unseen weather conditions such as intense local thunderstorms or prolonged droughts, which are beyond the scope of this paper
    • …
    corecore