36 research outputs found

    Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different approaches are used for determining the number of <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) cells in a suspension. The majority of them are based upon culture (determination of CFU) or visual/instrumental direct counting of MAP cells. In this study, we have compared the culture method with a previously published F57 based quantitative real-time PCR (F57qPCR) method, to determine their relative abilities to count the number of three different MAP isolates in suspensions with the same optical densities (OD). McFarland turbidity standards were also compared with F57qPCR and culture, due to its frequent inclusion and use in MAP studies.</p> <p>Findings</p> <p>The numbers of MAP in two-fold serial dilutions of isolates with respective OD measurements were determined by F57qPCR and culture. It was found that culture provided lower MAP CFU counts by approximately two log<sub>10</sub>, compared to F57qPCR. The McFarland standards (as defined for <it>E. coli</it>) showed an almost perfect fit with the enumeration of MAP performed by F57qPCR.</p> <p>Conclusions</p> <p>It is recommended to use culture and/or qPCR estimations of MAP numbers in experiments where all subsequent counts are performed using the same method. It is certainly not recommended the use of culture as the standard for qPCR experiments and <it>vice versa</it>.</p

    Replication of fifteen loci involved in human plasma protein N-glycosylation in 4,802 samples from four cohorts

    Get PDF
    Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4,802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the sixteen loci reported previously, fifteen were replicated in our study. For the remaining locus (near the KREMEN1 gene) the replication power was low, and hence replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The fifteen replicated loci present a good target for further functional studies. Among these, eight genes encode glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4, and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo

    Paratuberculose em ruminantes no Brasil

    Full text link

    Comparison of filtering methods, filter processing and DNA extraction kits for detection of mycobacteria in water

    No full text
    Introduction and objective Mycobacteria have been isolated from almost all types of natural waters, as well as from man-made water distribution systems. Detection of mycobacteria using PCR has been described in different types of water; however, currently, there is no standardised protocol for the processing of large volumes of water. Material and Methods In the present study, different filtering methods are tested and optimised for tap or river water filtration up to 10 L, as well as filter processing and DNA isolation using four commercially available kits. Results The PowerWater DNA isolation kit (MoBio, USA), together with a kit used for soil and other environmental samples (PowerSoil DNA isolation kit, MoBio), had the highest efficiency. Filtration of 10 L of water and elution of the filter in PBS with the addition of 0.05% of Tween 80 is suggested. Conclusions The described protocol for filter elution is recommended, and the use of the PowerWater DNA isolation kit for the highest mycobacterial DNA yield from water samples. The described protocol is suitable for parallel detection of mycobacteria using cultivation

    Application of a Peptide-Mediated Magnetic Separation-Phage Assay for Detection of Viable Mycobacterium avium subsp. paratuberculosis to Bovine Bulk Tank Milk and Feces Samples▿†

    No full text
    Naturally contaminated bovine bulk tank milk (n = 44) and feces (n = 39) were tested for the presence of viable Mycobacterium avium subsp. paratuberculosis by a novel peptide-mediated magnetic separation-phage (PMS-phage) assay. Counts of viable M. avium subsp. paratuberculosis cells ranging from 1 to 110 PFU/50 ml of milk and 6 to 41,111 PFU/g of feces were indicated by the PMS-phage assay

    Persistence of Mycobacterium avium subsp. paratuberculosis at a Farm-Scale Biogas Plant Supplied with Manure from Paratuberculosis-Affected Dairy Cattle▿

    No full text
    In this study, products from all steps of anaerobic digestion at a farm-scale biogas plant supplied with manure from paratuberculosis-affected dairy cattle were examined and quantified for the presence of the causal agent of paratuberculosis, Mycobacterium avium subsp. paratuberculosis, using culture and quantitative real-time PCR (qPCR). Viable M. avium subsp. paratuberculosis cells were detected using culture in fermentors for up to 2 months; the presence of M. avium subsp. paratuberculosis DNA (101 cells/g) was demonstrated in all anaerobic fermentors and digestate 16 months after initiation of work at a biogas plant, using IS900 qPCR. F57 qPCR was able to detect M. avium subsp. paratuberculosis DNA (102 cells/g) at up to 12 months. According to these results, a fermentation process that extended beyond 2 months removed all viable M. avium subsp. paratuberculosis cells and therefore rendered its product M. avium subsp. paratuberculosis free. However, M. avium subsp. paratuberculosis DNA was found during all the examined periods (more than 1 year), which could be explained by either residual DNA being released from dead cells or by the presence of viable cells whose amount was under the limit of cultivability. As the latter hypothesis cannot be excluded, the safety of the final products of digestion used for fertilization or animal bedding cannot be defined, and further investigation is necessary to confirm or refute this risk

    Detection of viable Mycobacterium avium subspecies paratuberculosis in powdered infant formula by phage-PCR and confirmed by culture

    No full text
    Surveys from different parts of the world have reported that viable Mycobacterium avium subsp. paratuberculosis (MAP) can be cultured from approximately 2% of samples of retail pasteurised milk samples. Pasteurised milk is used for the production of powdered infant formula (PIF) and therefore there is a concern that MAP may also be present in these products. Several studies have previously reported the detection of MAP in PIF using PCR-based assays. However, culture-based surveys of PIF have not detected viable MAP. Here we describe a phage amplification assay coupled with PCR (page-PCR) that can rapidly detect viable MAP in PIF. The results of a small survey showed that the phage-PCR assay detected viable MAP in 13% (4/32) of PIF samples. Culture detected viable MAP in 9% (3/32) PIF samples, all of which were also phage-PCR positive. Direct IS900 PCR detected MAP DNA in 22% (7/32) of PIF samples. The presence of viable MAP in PIF indicates that MAP either survived PIF manufacturing or that post-production contamination occurred. Irrespective of the route of MAP contamination, the presence of viable MAP in PIF is a potential public health concern
    corecore