773 research outputs found
On the inclusion of collisional correlations in quantum dynamics
AbstractWe present a formalism to describe collisional correlations responsible for thermalization effects in finite quantum systems. The approach consists in a stochastic extension of time dependent mean field theory. Correlations are treated in time dependent perturbation theory and loss of coherence is assumed at some time intervals allowing a stochastic reduction of the correlated dynamics in terms of a stochastic ensemble of time dependent mean-fields. This theory was formulated long ago in terms of density matrices but never applied in practical cases because of its complexity. We propose here a reformulation of the theory in terms of wave functions and use a simplified 1D model of cluster and molecules allowing to test the theory in a schematic but realistic manner. We illustrate the performance in terms of several observables, in particular global moments of the density matrix and single particle entropy built on occupation numbers. The occupation numbers remain fixed in time dependent mean-field propagation and change when evaluating the correlations, then taking fractional values. They converge asymptotically towards Fermi distributions which is a clear indication of thermalization
Probing atom-surface interactions by diffraction of Bose-Einstein condensates
In this article we analyze the Casimir-Polder interaction of atoms with a
solid grating and an additional repulsive interaction between the atoms and the
grating in the presence of an external laser source. The combined potential
landscape above the solid body is probed locally by diffraction of
Bose-Einstein condensates. Measured diffraction efficiencies reveal information
about the shape of the Casimir-Polder interaction and allow us to discern
between models based on a pairwise-summation (Hamaker) approach and Lifshitz
theory.Comment: 5 pages, 4 figure
Self-synchronization and dissipation-induced threshold in collective atomic recoil lasing
Networks of globally coupled oscillators exhibit phase transitions from incoherent to coherent states. Atoms interacting with the counterpropagating modes of a unidirectionally pumped high-finesse ring cavity form such a globally coupled network. The coupling mechanism is provided by collective atomic recoil lasing, i.e., cooperative Bragg scattering of laser light at an atomic density grating, which is self-induced by the laser light. Under the rule of an additional friction force, the atomic ensemble is expected to undergo a phase transition to a state of synchronized atomic motion. We present the experimental investigation of this phase transition by studying the threshold behavior of this lasing process
Cavity-enhanced superradiant Rayleigh scattering with ultra-cold and Bose-Einstein condensed atoms
We report on the observation of collective atomic recoil lasing and
superradiant Rayleigh scattering with ultracold and Bose-Einstein condensed
atoms in an optical ring cavity. Both phenomena are based on instabilities
evoked by the collective interaction of light with cold atomic gases. This
publication clarifies the link between the two effects. The observation of
superradiant behavior with thermal clouds as hot as several tens of
proves that the phenomena are driven by the cooperative
dynamics of the atoms, which is strongly enhanced by the presence of the ring
cavity.Comment: 10 pages, 10 figure
Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure
The combination of ultra-cold atomic clouds with the light fields of optical
cavities provides a powerful model system for the development of new types of
laser cooling and for studying cooperative phenomena. These experiments
critically depend on the precise tuning of an incident pump laser with respect
to a cavity resonance. Here, we present a simple and reliable experimental
tuning scheme based on a two-mode laser spectrometer. The scheme uses a first
laser for probing higher-order transversal modes of the cavity having an
intensity minimum near the cavity's optical axis, where the atoms are confined
by a magnetic trap. In this way the cavity resonance is observed without
exposing the atoms to unwanted radiation pressure. A second laser, which is
phase-locked to the first one and tuned close to a fundamental cavity mode
drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure
Cooperative Scattering by Cold Atoms
We have studied the interplay between disorder and cooperative scattering for
single scattering limit in the presence of a driving laser. Analytical results
have been derived and we have observed cooperative scattering effects in a
variety of experiments, ranging from thermal atoms in an optical dipole trap,
atoms released from a dark MOT and atoms in a BEC, consistent with our
theoretical predictions.Comment: submitted for special issue of PQE 201
The role of Mie scattering in the seeding of matter-wave superradiance
Matter-wave superradiance is based on the interplay between ultracold atoms
coherently organized in momentum space and a backscattered wave. Here, we show
that this mechanism may be triggered by Mie scattering from the atomic cloud.
We show how the laser light populates the modes of the cloud, and thus imprints
a phase gradient on the excited atomic dipoles. The interference with the atoms
in the ground state results in a grating, that in turn generates coherent
emission, contributing to the backward light wave onset. The atomic recoil
'halos' created by the scattered light exhibit a strong anisotropy, in contrast
to single-atom scattering
Experimental perspectives for systems based on long-range interactions
The possibility of observing phenomena peculiar to long-range interactions,
and more specifically in the so-called Quasi-Stationary State (QSS) regime is
investigated within the framework of two devices, namely the Free-Electron
Laser (FEL) and the Collective Atomic Recoil Laser (CARL). The QSS dynamics has
been mostly studied using the Hamiltonian Mean-Field (HMF) toy model,
demonstrating in particular the presence of first versus second order phase
transitions from magnetized to unmagnetized regimes in the case of HMF. Here,
we give evidence of the strong connections between the HMF model and the
dynamics of the two mentioned devices, and we discuss the perspectives to
observe some specific QSS features experimentally. In particular, a dynamical
analog of the phase transition is present in the FEL and in the CARL in its
conservative regime. Regarding the dissipative CARL, a formal link is
established with the HMF model. For both FEL and CARL, calculations are
performed with reference to existing experimental devices, namely the
FERMI@Elettra FEL under construction at Sincrotrone Trieste (Italy) and the
CARL system at LENS in Florence (Italy)
Sensitivity of Melt Pool Dimensions and Keyhole to Laser Beam Diameter
The laser powder bed fusion process has witnessed a huge interest in recent years since it has the potential to produce challenging shapes in a broad range of applications. The process parameters have a considerable effect on melt pool size and on the development of defect porosity. This paper predicts numerically the effect of a large range of laser beam diameters on melt pool dimensions and on the occurrence of porosity defects such as keyhole. A series of single beads of Inconel IN625 was made using various combinations of beam diameters, scan speeds, and laser powers. The use of a large diameter was more suitable rather than a small diameter as it ensures a large and shallow heat affected zone, thus decreasing the development of the keyhole defect. Our numerical results correlate satisfactorily with experimental finding from literature
- âŠ