51 research outputs found

    Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing

    Get PDF
    In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (<1 ”m) platforms, are highly relevant for nanoscale sensing. The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step, which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices

    Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing

    Get PDF
    In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (< 1Ό\mum) platforms, are highly relevant for nanoscale sensing. The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.Comment: v2: accepted for publication in Micromachines 2019, 10(11), 718; https://doi.org/10.3390/mi1011071

    Enhancement of bulk second-harmonic generation from silicon nitride films by material composition

    Get PDF
    We present a comprehensive tensorial characterization of second-harmonic generation from silicon nitride films with varying composition. The samples were fabricated using plasma-enhanced chemical vapor deposition, and the material composition was varied by the reactive gas mixture in the process. We found a six-fold enhancement between the lowest and highest second-order susceptibility, with the highest value of approximately 5 pm/V from the most silicon-rich sample. Moreover, the optical losses were found to be sufficiently small (below 6 dB/cm) for applications. The tensorial results show that all samples retain in-plane isotropy independent of silicon content, highlighting the controllability of the fabrication process.Comment: 4 pages, 3 figures, 2 tables; Re-submitted to Optics Letter

    Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds : achievements and challenges

    Get PDF
    Powered by the mutual developments in instrumentation, materials and theoretical descriptions, sensing and imaging capabilities of quantum emitters in solids have significantly increased in the past two decades. Quantum emitters in solids, whose properties resemble those of atoms and ions, provide alternative ways to probing natural and artificial nanoscopic systems with minimum disturbance and ultimate spatial resolution. Among those emerging quantum emitters, the nitrogen vacancy (NV) color center in diamond is an outstanding example due to its intrinsic properties at room temperature (highly-luminescent, photo-stable, biocompatible, highly-coherent spin states). This review article summarizes recent advances and achievements in using NV centers within nano- and single crystal diamonds in sensing and imaging. We also highlight prevalent challenges and material aspects for different types of diamond and outline the main parameters to consider when using color centers as sensors. As a novel sensing resource, we highlight the properties of NV centers as light emitting electrical dipoles and their coupling to other nanoscale dipoles e.g. graphene

    Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

    Full text link
    We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively-charged NV−^{-} defects, with respect to its neutral counterpart NV0^{0}, decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase of the proportion of NV−^{-} defects in 10-nm NDs. These results are invaluable for further understanding, control and use of the unique properties of negatively-charged NV defects in diamondComment: 6 pages, 4 figure

    Cascaded four-wave mixing in tapered plasmonic nanoantenna

    Full text link
    We study theoretically the cascaded four-wave mixing (FWM) in broadband tapered plasmonic nanoantennas and demonstrate a 300-fold increase in nonlinear frequency conversion detected in the main lobe of the nanoantenna far-field pattern. This is achieved by tuning the elements of the nanoantenna to resonate frequencies involved into the FWM interaction. Our findings have a potentially broad application in ultrafast nonlinear spectroscopy, sensing, on-chip optical frequency conversion, nonlinear optical metamaterials and photon sources
    • 

    corecore