189 research outputs found

    Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer

    Get PDF
    Dendrimers are structurally well-defined, synthetic polymers with sizes and physicochemical properties often resembling those of biomacromolecules (e.g. proteins). As a result they are promising candidates for peptide-based vaccine delivery platforms. Herein, we established a synthetic pathway to conjugate a human papillomavirus (HPV) E7 protein-derived peptide antigen to a star-polymer to create a macromolecular vaccine candidate to treat HPV-related cancers. These conjugates were able to reduce tumor growth and eradicate E7-expressing TC-1 tumors in mice after a single immunization, without the help of any external adjuvant

    Multiantigenic peptide-polymer conjugates as therapeutic vaccines against cervical cancer

    Get PDF
    Immunotherapy is one of the most promising strategies for the treatment of cancer. Human papillomavirus (HPV) is responsible for virtually all cases of cervical cancer. The main purpose of a therapeutic HPV vaccine is to stimulate CD8(+) cytotoxic T lymphocytes (CTLs) that can eradicate HPV infected cells. HPV oncoproteins E6 and E7 are continuously expressed and are essential for maintaining the growth of HPV-associated tumor cells. We designed polymer-based multi-antigenic formulations/constructs that were comprised of the E6 and E7 peptide epitopes. We developed an N-terminus-based epitope conjugation to conjugate two unprotected peptides to poly tert-butyl acrylate. This method allowed for the incorporation of the two antigens into a polymeric dendrimer in a strictly equimolar ratio. The most effective formulations eliminated tumors in up to 50% of treated mice. Tumor recurrence was not observed up to 3 months post initial challenge. (C) 2016 Elsevier Ltd. All rights reserved

    Self-adjuvanting therapeutic peptide-based vaccine induce CD8+ cytotoxic T lymphocyte responses in a murine human papillomavirus tumor model

    Get PDF
    Vaccine candidatesfor the treatment of human papillomavirus (HPV)-associated cancers areaimed to activate T-cells and induce development of cytotoxic anti-tumor specific responses. Peptide epitopes derived from HPV-16 E7 oncogenic proteinhave been identified as promising antigens for vaccine development. However, peptide-based antigens alone elicit poor cytotoxic T lymphocyte (CTL) responses and need to be formulated with an adjuvant (immunostimulant) to achieve the desired immune responses. We have reported the ability of polyacrylate 4-arm star-polymer (S4) conjugated with HPV-16 E744-57 (8Qmin) epitope to reduce and eradicate TC-1 tumor in the mouse model. Herein, we have studied the mechanism of induction of immune responses by this polymer-peptide conjugate and found prompt uptake of conjugate by antigen presenting cells, stimulating stronger CD8+ rather than CD4+ or NK cell responses

    Oral peptide vaccine against hookworm infection: correlation of antibody titers with protective efficacy

    Get PDF
    Approximately 0.4 billion individuals worldwide are infected with hookworm. An effective vaccine is needed to not only improve the health of those affected and at high risk, but also to improve economic growth in disease-endemic areas. An ideal anti-hookworm therapeutic strategy for mass administration is a stable and orally administered vaccine. Oral vaccines are advantageous as they negate the need for trained medical staff for administration and do not require strict sterility conditions. Vaccination, therefore, can be carried out at a significantly reduced cost. One of the most promising current antigenic targets for hookworm vaccine development is the aspartic protease digestive enzyme (APR-1). Antibody-mediated neutralization of APR-1 deprives the worm of nourishment, leading to reduced worm burdens in vaccinated hosts. Previously, we demonstrated that, when incorporated into vaccine delivery systems, the APR-1-derived p3 epitope (TSLIAGPKAQVEAIQKYIGAEL) was able to greatly reduce worm burdens (≥90%) in BALB/c mice; however, multiple, large doses of the vaccine were required. Here, we investigated a variety of p3-antigen conjugates to optimize antigen delivery and establish immune response/protective efficacy relationships. We synthesized, purified, and characterized four p3 peptide-based vaccine candidates with: (a) lipidic (lipid core peptide (LCP)); (b) classical polymeric (polymethylacrylate (PMA)); and (c) novel polymeric (polyleucine in a branched or linear arrangement, BL10 or LL10, respectively) groups as self-adjuvanting moieties. BL10 and LL10 induced the highest serum anti-p3 and anti-APR-1 IgG titers. Upon challenge with rodent hookworms, the highest significant reduction in worm burden was observed in mice immunized with LL10 . APR-1-specific serum IgG titers correlated with worm burden reduction. Thus, we provide the first vaccine-triggered immune response-protection relationship for hookworm infection

    Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold

    Get PDF
    Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures

    Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus

    Get PDF
    Rheumatic heart disease represents a leading cause of mortality caused by Group A Streptococcus (GAS) infections transmitted through the respiratory route. Although GAS infections can be treated with antibiotics these are often inadequate. An efficacious GAS vaccine holds more promise, with intranasal vaccination especially attractive, as it mimics the natural route of infections and should be able to induce mucosal IgA and systemic IgG immunity. Nanoparticles were prepared by either encapsulating or coating lipopeptide-based vaccine candidate (LCP-1) on the surface of poly(lactic-co-glycolic acid) (PLGA). In vitro study showed that encapsulation of LCP-1 vaccine into nanoparticles improved uptake and maturations of antigen-presenting cells. The immunogenicity of lipopeptide incorporated PLGA-based nanoparticles was compared with peptides co-administered with mucosal adjuvant cholera toxin B in mice upon intranasal administration. Higher levels of J14-specific salivary mucosal IgA and systemic antibody IgG titres were observed for groups immunized with encapsulated LCP-1 compared to LCP-1 coated nanoparticles or free LCP-1. Systemic antibodies obtained from LCP-1 encapsulated PLGA NPs inhibited the growth of bacteria in six different GAS strains. Our results show that PLGA-based lipopeptide delivery is a promising approach for rational design of a simple, effective and patient friendly intranasal GAS vaccine resulting in mucosal IgA response

    A global review on short peptides: frontiers and perspectives

    Get PDF
    Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide “drugs” initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed

    Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2

    Get PDF
    Despite the high safety profile of peptide-based vaccines over conventional counterparts, the inability of small peptides to produce a strong immune response represents the main obstacle for the development of these types of vaccines. Introducing a self-adjuvanting moiety such as poly tert-butyl acrylate can overcome this problem. However, the mode of action of this polymer to produce the desired humoral and/or cellular immune response is still unknown. An AlphaScreen assay along with the cell-free expression technique were employed to evaluate the affinity of this polymer toward toll-like receptor 2 (TLR2) for stimulation of innate immunity. In this study, B-cell epitope, J14, derived from the M protein of group A streptococcus (GAS) was used in conjugation with the poly tert-butyl acrylate as well as a biotin moiety. Pam2Cys analogue, the potent TLR2 agonist, was synthesized and used as a positive control in this work. The AlphaScreen assay showed the inability of polymer to bind to TLR2, while the Pam2Cys displayed very strong binding to TLR2 as expected. This result indicated that poly tert-butyl acrylate does not express its immunogenic effects through recognition by TLR2 and therefore further studies are required to determine its mode of action

    Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces potent immune responses against group A streptococcus

    Get PDF
    Peptide-based vaccines have the potential to overcome the limitations of classical vaccines; however, their use is hampered by a lack of carriers and adjuvants suitable for human use. In this study, an efficient self-adjuvanting peptide vaccine delivery system was developed based on the ionic interactions between cationic trimethyl chitosan (TMC) and a peptide antigen coupled with synthetically defined anionic α-poly-(L-glutamic acid) (PGA). The antigen, possessing a conserved B-cell epitope derived from the group A streptococcus (GAS) pathogen and a universal T-helper epitope, was conjugated to PGA using cycloaddition reaction. The produced anionic conjugate formed nanoparticles (NP-1) through interaction with cationic TMC. These NP-1 induced higher systemic and mucosal antibody titers compared to antigen adjuvanted with standard mucosal adjuvant cholera toxin B subunit or antigen mixed with TMC. The produced serum antibodies were also opsonic against clinically isolated GAS strains. Further, a reduction in bacterial burden was observed in nasal secretions, pharyngeal surface and nasopharyngeal-associated lymphoid tissue of mice immunized with NP-1 in GAS challenge studies. Thus, conjugation of defined-length anionic polymer to peptide antigen as a means of formulating ionic interaction-based nanoparticles with cationic polymer is a promising strategy for peptide antigen delivery. Statement of Significance: A self-adjuvanting delivery system is required for peptide vaccines to enhance antigen delivery to immune cells and generate systemic and mucosal immunity. Herein, we developed a novel self-adjuvanting nanoparticulate delivery system for peptide antigens by combining polymer-conjugation and complexation strategies. We conjugated peptide antigen with anionic α-poly-(L-glutamic acid) that in turn, formed nanoparticles with cationic trimethyl chitosan by ionic interactions, without using external crosslinker. On intranasal administration to mice, these nanoparticles induced systemic and mucosal immunity, at low dose. Additionally, nanoparticles provided protection to vaccinated mice against group A streptococcus infection. Thus, this concept should be particularly useful in developing nanoparticles for the delivery of peptide antigens

    Aggregation and settling in aqueous polydisperse alumina nanoparticle suspensions

    Full text link
    Nanoparticle suspensions (also called nanofluids) are often polydisperse and tend to settle with time. Settling kinetics in these systems are known to be complex and hence challenging to understand. In this work, polydisperse spherical alumina (Al2O3) nanoparticles in the size range of ~10-100nm were dispersed in water and examined for aggregation and settling behaviour near its isoelectric point (IEP). A series of settling experiments were conducted and the results were analysed by photography and by Small Angle X-ray Scattering (SAXS). The settling curve obtained from standard bed height measurement experiments indicated two different types of behaviour, both of which were also seen in the SAXS data. But the SAXS data were remarkably able to pick out the rapid settling regime as a result of the high temporal resolution (10s) used. By monitoring the SAXS intensity, it was further possible to record the particle aggregation process for the first time. Optical microscopy images were produced on drying and dried droplets extracted from the suspension at various times. Dried deposits showed the rapid decrease in the number of very large particles with time which qualitatively validates the SAXS prediction, and therefore its suitability as a tool to study unstable polydisperse colloids. Keywords: Nanoparticles, nanofluids, polydisperse, aggregation, settling, alumina, microscopy, SAX
    corecore