158 research outputs found

    The application of self-assembled nanostructures in peptide-based subunit vaccine development

    Get PDF
    Peptide based-vaccines are becoming one of the most widely investigated prophylactic and therapeutic health care interventions against a variety of diseases, including cancer. However, the lack of a safe and highly efficient adjuvant (immune stimulant) is regarded as the biggest obstacle to vaccine development. The incorporation of a peptide antigen in a nanostructure-based delivery system was recently shown to overcome this obstacle. Nanostructures are often formed from antigens conjugated to molecules such as polymers, lipids, and peptide, with the help of self-assembly phenomenon. This review describes the application of self-assembly process for the production of peptide-based vaccine candidates and the ability of these nanostructures to stimulate humoral and cellular immune responses

    Multiantigenic peptide-polymer conjugates as therapeutic vaccines against cervical cancer

    Get PDF
    Immunotherapy is one of the most promising strategies for the treatment of cancer. Human papillomavirus (HPV) is responsible for virtually all cases of cervical cancer. The main purpose of a therapeutic HPV vaccine is to stimulate CD8(+) cytotoxic T lymphocytes (CTLs) that can eradicate HPV infected cells. HPV oncoproteins E6 and E7 are continuously expressed and are essential for maintaining the growth of HPV-associated tumor cells. We designed polymer-based multi-antigenic formulations/constructs that were comprised of the E6 and E7 peptide epitopes. We developed an N-terminus-based epitope conjugation to conjugate two unprotected peptides to poly tert-butyl acrylate. This method allowed for the incorporation of the two antigens into a polymeric dendrimer in a strictly equimolar ratio. The most effective formulations eliminated tumors in up to 50% of treated mice. Tumor recurrence was not observed up to 3 months post initial challenge. (C) 2016 Elsevier Ltd. All rights reserved

    Self-adjuvanting therapeutic peptide-based vaccine induce CD8+ cytotoxic T lymphocyte responses in a murine human papillomavirus tumor model

    Get PDF
    Vaccine candidatesfor the treatment of human papillomavirus (HPV)-associated cancers areaimed to activate T-cells and induce development of cytotoxic anti-tumor specific responses. Peptide epitopes derived from HPV-16 E7 oncogenic proteinhave been identified as promising antigens for vaccine development. However, peptide-based antigens alone elicit poor cytotoxic T lymphocyte (CTL) responses and need to be formulated with an adjuvant (immunostimulant) to achieve the desired immune responses. We have reported the ability of polyacrylate 4-arm star-polymer (S4) conjugated with HPV-16 E744-57 (8Qmin) epitope to reduce and eradicate TC-1 tumor in the mouse model. Herein, we have studied the mechanism of induction of immune responses by this polymer-peptide conjugate and found prompt uptake of conjugate by antigen presenting cells, stimulating stronger CD8+ rather than CD4+ or NK cell responses

    Oral peptide vaccine against hookworm infection: correlation of antibody titers with protective efficacy

    Get PDF
    Approximately 0.4 billion individuals worldwide are infected with hookworm. An effective vaccine is needed to not only improve the health of those affected and at high risk, but also to improve economic growth in disease-endemic areas. An ideal anti-hookworm therapeutic strategy for mass administration is a stable and orally administered vaccine. Oral vaccines are advantageous as they negate the need for trained medical staff for administration and do not require strict sterility conditions. Vaccination, therefore, can be carried out at a significantly reduced cost. One of the most promising current antigenic targets for hookworm vaccine development is the aspartic protease digestive enzyme (APR-1). Antibody-mediated neutralization of APR-1 deprives the worm of nourishment, leading to reduced worm burdens in vaccinated hosts. Previously, we demonstrated that, when incorporated into vaccine delivery systems, the APR-1-derived p3 epitope (TSLIAGPKAQVEAIQKYIGAEL) was able to greatly reduce worm burdens (≥90%) in BALB/c mice; however, multiple, large doses of the vaccine were required. Here, we investigated a variety of p3-antigen conjugates to optimize antigen delivery and establish immune response/protective efficacy relationships. We synthesized, purified, and characterized four p3 peptide-based vaccine candidates with: (a) lipidic (lipid core peptide (LCP)); (b) classical polymeric (polymethylacrylate (PMA)); and (c) novel polymeric (polyleucine in a branched or linear arrangement, BL10 or LL10, respectively) groups as self-adjuvanting moieties. BL10 and LL10 induced the highest serum anti-p3 and anti-APR-1 IgG titers. Upon challenge with rodent hookworms, the highest significant reduction in worm burden was observed in mice immunized with LL10 . APR-1-specific serum IgG titers correlated with worm burden reduction. Thus, we provide the first vaccine-triggered immune response-protection relationship for hookworm infection

    Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus

    Get PDF
    Rheumatic heart disease represents a leading cause of mortality caused by Group A Streptococcus (GAS) infections transmitted through the respiratory route. Although GAS infections can be treated with antibiotics these are often inadequate. An efficacious GAS vaccine holds more promise, with intranasal vaccination especially attractive, as it mimics the natural route of infections and should be able to induce mucosal IgA and systemic IgG immunity. Nanoparticles were prepared by either encapsulating or coating lipopeptide-based vaccine candidate (LCP-1) on the surface of poly(lactic-co-glycolic acid) (PLGA). In vitro study showed that encapsulation of LCP-1 vaccine into nanoparticles improved uptake and maturations of antigen-presenting cells. The immunogenicity of lipopeptide incorporated PLGA-based nanoparticles was compared with peptides co-administered with mucosal adjuvant cholera toxin B in mice upon intranasal administration. Higher levels of J14-specific salivary mucosal IgA and systemic antibody IgG titres were observed for groups immunized with encapsulated LCP-1 compared to LCP-1 coated nanoparticles or free LCP-1. Systemic antibodies obtained from LCP-1 encapsulated PLGA NPs inhibited the growth of bacteria in six different GAS strains. Our results show that PLGA-based lipopeptide delivery is a promising approach for rational design of a simple, effective and patient friendly intranasal GAS vaccine resulting in mucosal IgA response

    Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold

    Get PDF
    Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures

    Self-adjuvanting vaccine against group A streptococcus: application of fibrillized peptide and immunostimulatory lipid as adjuvant

    Get PDF
    Peptides are of great interest to be used as vaccine antigens due to their safety, ease of manufacturing and specificity in generating immune response. There have been massive discoveries of peptide antigens over the past decade. However, peptides alone are poorly immunogenic, which demand co-administration with strong adjuvant to enhance their immunogenicity. Recently, fibril-forming peptides such as Q11 and lipoamino acid-based carrier have been identified to induce substantial immune responses when covalently linked to peptide epitope. In this study, we have incorporated either Q11 or lipoamino acids to a peptide epitope (J14) derived from M protein of group A streptococcus to develop self-adjuvanting vaccines. J14, Q11 and lipoamino acids were also conjugated together in a single vaccine construct in an attempt to evaluate the synergy effect of combining multiple adjuvants. Physicochemical characterization demonstrated that the vaccine constructs folded differently and self-assembled into nanoparticles. Significantly, only vaccine constructs containing double copies of lipoamino acids (regardless in conjugation with Q11 or not) were capable to induce significant dendritic cells uptake and subsequent J14-specific antibody responses in non-sizes dependent manners. Q11 had minimal impact in enhancing the immunogenicity of J14 even when it was used in combination with lipoamino acids. These findings highlight the impact of lipoamino acids moiety as a promising immunostimulant carrier and its number of attachment to peptide epitope was found to have a profound effect on the vaccine immunogenicity

    Investigating the affinity of poly tert-butyl acrylate toward Toll-Like Receptor 2

    Get PDF
    Despite the high safety profile of peptide-based vaccines over conventional counterparts, the inability of small peptides to produce a strong immune response represents the main obstacle for the development of these types of vaccines. Introducing a self-adjuvanting moiety such as poly tert-butyl acrylate can overcome this problem. However, the mode of action of this polymer to produce the desired humoral and/or cellular immune response is still unknown. An AlphaScreen assay along with the cell-free expression technique were employed to evaluate the affinity of this polymer toward toll-like receptor 2 (TLR2) for stimulation of innate immunity. In this study, B-cell epitope, J14, derived from the M protein of group A streptococcus (GAS) was used in conjugation with the poly tert-butyl acrylate as well as a biotin moiety. Pam2Cys analogue, the potent TLR2 agonist, was synthesized and used as a positive control in this work. The AlphaScreen assay showed the inability of polymer to bind to TLR2, while the Pam2Cys displayed very strong binding to TLR2 as expected. This result indicated that poly tert-butyl acrylate does not express its immunogenic effects through recognition by TLR2 and therefore further studies are required to determine its mode of action
    corecore