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Abstract 

Peptide based-vaccines are becoming one of the most widely investigated prophylactic and 

therapeutic health care interventions against a variety of diseases, including cancer. However, the 

lack of a safe and highly efficient adjuvant (immune stimulant) is regarded as the biggest obstacle 

to vaccine development. The incorporation of a peptide antigen in a nanostructure-based delivery 

system was recently shown to overcome this obstacle. Nanostructures are often formed from 

antigens conjugated to molecules such as polymers, lipids, and peptide, with the help of self-

assembly phenomenon. This review describes the application of self-assembly process for the 

production of peptide-based vaccine candidates and the ability of these nanostructures to stimulate 

humoral and cellular immune responses. 
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Abbreviations 

APC, antigen-presenting cell; BMA, butyl methacrylate; C16, 2-(R/S)-hexadecanoic acid; (C18)2, 

N,N-dioctadecyl succinamic acid; CFA, complete Freund's adjuvant; CuAAC, copper-catalyzed 

azide-alkyne cycloaddition; DLS, dynamic light scattering; ELISA, enzyme-linked immunosorbent 

assay; FDA, Food and Drug Administration; GAS, group A streptococcus; HCV, hepatitis C virus; 

HIV, human immunodeficiency virus; HPV, human papilloma virus; IFA, incomplete Freund’s 

adjuvant; IgG, immunoglobulin G; LCP, lipid core peptide; OVA, ovalbumin; PADRE, pan DR 

epitope; Pam2Cys, dipalmitoyl-S-glyceryl cysteine; Pam3Cys, tripalmitoyl-S-glyceryl cysteine; 

PbCSP, Plasmodium berghei circumsporozoite protein; PBS, phosphate-buffered saline; PDSMA, 

pyridyl disulfide methacrylamide; PEG-PPS, poly(ethylene glycol)-stabilized poly(propylene 

sulfide) core nanoparticle; SAP, self-assembling polypeptide; SARS, severe acute respiratory 

syndrome; TEM, transmission electron microscopy; TLR2, toll-like receptor 2; TLR4, toll-like 

receptor 4; TLR9, toll-like receptor 9; T-VEC, talimogene laherparepvec; VLP, virus-like particle;  
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Highlights 

 Polymer-peptide conjugates can self-assemble to form particles of various sizes. While 

smaller nanoparticles are usually more immunogenic, even microparticles were reported to 

induce strong immune responses. 

 In addition to forming nanoparticles, lipid-antigen conjugates can interact with receptors on 

the surface of antigen presenting cells.  

 Peptides with β-sheet conformation usually form nanofibers, while α-helical and random 

coil peptides tend to self-assemble into nanoparticles. 

 Peptide-based self-assembled nanostructures are usually poorer inducers of immune 

responses than lipids or polymers, and therefore are used in the higher dose to achieve 

required efficacy.  
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Introduction 

A vaccine is an agent that can confer or improve the immunity of individuals to specific diseases. 

Vaccines are typically composed of attenuated or inactivated microorganisms or viruses [1], or their 

fragments [2-5]. Since the development of the first vaccine two hundred years ago [6], vaccination 

has become one of the most popular interventions against a variety of infectious diseases. Moreover, 

a vaccine is the only available choice to combat infection where no effective drug treatment exists 

(e.g. Poliomyelitis) [7]. Compared to classical drugs, which require multiple doses, the long-term 

protection against specific pathogens or diseases makes vaccines a more cost and time effective 

choice. Additionally, in comparison to drugs, vaccines have typically lower toxicity, (especially as 

they are normally used as a single dose treatment) and mass vaccination can significantly control 

the spread of infectious diseases. 

Classically, all vaccines were prophylactic; however, many modern vaccines are designed to 

eliminate existing disease (e.g. cancer) and thus are therapeutic. Prophylactic vaccines usually offer 

long-term protection against infectious diseases. In contrast to prophylactic vaccines, which usually 

induce humoral immune responses (antibody production), therapeutic vaccines are designed to 

stimulate a cytotoxic T lymphocyte response to eliminate cells that are already infected [8-10]. 

Therapeutic vaccines are a growing pharmaceutical sector. Sipuleucel-T (Provenge®) was approved 

by Food and Drug Administration (FDA) in 2010 for prostate cancer [11, 12] and talimogene 

laherparepvec (T-VEC) (Imlygic™) was introduced against metastatic melanoma in 2015 [13-15].  

Despite their advantages, vaccines also have some drawbacks. Traditional vaccines based on 

attenuated and inactivated pathogens may revert to virulent form [16, 17], cause autoimmunity or 

strong allergic responses [18, 19]. Additionally, the production and stability of this type of vaccine 

is often challenging. Subunit vaccines contain a small fragment of the whole pathogenic organism, 

for instance a recombinant protein, peptide, carbohydrate [20-23]. Recombinant protein-based 

vaccines cause fewer adverse effects, but the difficulty with protein extraction and possible 
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contamination during production are significant disadvantages. Recombinant vaccine can also 

trigger undesired immune responses. To avoid these obstacles minimal fragment of protein caring 

immunological information (peptide epitope) can be used for vaccine design [3]. However, peptide-

based vaccines still have their own Achilles’ heel. Peptides themselves are usually not 

immunogenic [3, 24]; therefore, the use of immunostimulating agents (adjuvants) are essential for 

the success of this vaccine formulation [25].  

Adjuvants are compounds that are able to evoke or enhance the immune response against co-

delivered antigens [26-28]. A number of adjuvants have already been developed, for example 

Freund’s adjuvant, lipid A, cholera toxin, aluminum salts, cytokines, liposomes, saponins, and CpG 

oligodeoxynucleotides [29-31]. However, the immunostimulating properties of these adjuvants are 

often poor or their toxicity is significant, therefore most of them are not suitable for human 

treatment. Thus, safer and more efficient adjuvants are urgently required [27]. 

Nanotechnology is one of the most quickly growing fields of science and engineering. It has been 

widely applied in materials, electronics, manufacturing, agricultural science, chemistry and 

bioscience [32-37]. In bioscience, nanotechnology is used to create sensors, medical imaging and 

diagnostic tools, and for drug delivery. The most widely used nanostructures in this field are 

nanoparticles. Nanoparticles are often defined as particles with diameters ranging from 1 to 100 nm 

[24, 38], while particles with diameter within the range of 100 to 1000 nm are considered sub-micro 

particles. However, following common understanding of “nano-size” range, nanostructures in this 

article are defined as any nanometer-sized object ranging from 1 to 1000 nm [39, 40].  

Nanoparticles are especially useful in vaccine design. Many pathogens are within the nanometer 

range, nanoparticles are usually taken up efficiently by antigen-presenting cells (APCs) [41]. APCs 

are the key element of the primary innate immune system [42] and are responsible for triggering 

further adaptive immune responses. Therefore nanostructures often have immunostimulating 

properties and help to trigger immune reactions against the antigens they delivered (Figure 1) [24, 
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43, 44]. Moreover, the surface of nanostructures can be modified with a specific targeting moiety 

for better APC recognition and uptake [45-47].  

 

Figure 1. Schematic representation of the self-assembled peptide subunit vaccines and the immune 

responses induced upon immunization with these nanostructures. 

 

There are two main approaches to creating nanostructures: (1) mechanically breaking a large 

material into nanostructures, or (2) building up nanostructures from basic segments, often via a self-

assembly process [48]. The first approach uses external forces like grinding, milling, or high 

pressure to break down the original material [49-51]. This process adds additional complexity to 

producing a nanostructure and the harsh conditions used to break down the initial component may 

damage the antigen. Nanostructures produced by this method typically have a low loading capacity 

and are often not biodegradable and thus may accumulate in the human tissues. Meanwhile, self-

assembly-based strategies for production of nanoparticle vaccines can overcome these problems.  

Here, we highlight how the use of carrier-antigen conjugates forming self-assembling 

nanostructures can be effectively combined with the rational vaccine design. The formation of self-

assembled nanoparticles from carrier-antigen (peptide epitopes) conjugates, and their ability to 
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generate humoral/cellular immune responses are discussed (Figure 1). Extensive reviews on non-

conjugated self-assembled antigen carrier, such as liposomes, can be found in the recent literature 

[52-55]. Similarly, virus-like particles (VLPs), which are formed by self-assembly processes, have 

been reviewed extensively in the recent literature [56-58] and therefore are beyond the scope of this 

article.  

 

Self-assembled nanostructures 

Self-assembly refers to the phenomenon in which basic constituents arrange into a spontaneously 

ordered structure or pattern. Examples of self-assembly can be found in the macro-world (e.g. self-

assembly of stars and galaxies [59]) as well as at micro and nano scale, many molecules were found 

to self-assemble into nano- or micro-structures [60]. Molecular self-assembly is defined as the 

spontaneous arrangement of molecules by non-covalent interactions [61, 62] directed by internal 

and external factors [63]. Internal factors are the properties of the nanostructure component 

molecules, for instance hydrophilic/hydrophobic ratio, charge, hydrogen bond formation, molecular 

weight, and molecular conformation [64, 65]. External factors are the environmental conditions 

surrounding the nanostructure such as pH, concentration, temperature, and solvent [66, 67].  

Incorporating a self-assembly process in the production of drug or vaccine constructs offers several 

advantages. Firstly, the properties (for instance size, composition and charges) of the nanostructure 

itself can be precisely defined and have high batch-to-batch consistency [68]. Well-defined physical 

and chemical properties are crucial for any biomedical application of nanostructures. Secondly, the 

preparation of self-assembled nanostructure is more efficient and economical because the 

nanostructure is formed spontaneously. The minimal use of chemicals during self-assembly makes 

the process environmentally friendly. Thirdly, nanostructures formed by self-assembly process are 

expected to biodegrade easily because the basic units aren’t chemically cross-linked. Additionally, 
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the well-defined properties of nanostructural material can make it easier to be approved for medical 

use by regulatory bodies such as the FDA.  

Self-assembly acquires additional complexity when used in vaccine design. Normally, the structure 

(peptide sequence) of the antigen cannot be modified without affecting its immunological properties. 

Thus the self-assembly process is usually controlled by the carrier (assembly inducer) conjugated to 

the antigen (Figure 1). Peptide antigens are often hydrophilic; therefore, hydrophobic moieties such 

as polymers, lipids and special peptides usually fill this role. This results in amphiphilic conjugates 

that can self-assemble into an ordered nanostructure.  

 

Polymer-based self-assembled nanostructures 

A polymer alone or conjugated to other moieties can exhibit amphiphilic properties and self-

assemble into particles. These self-assembled particles can be used for vaccine delivery to protect 

the antigen from enzymatic degradation, enhance antigen uptake by APCs, and may have self-

adjuvanting properties, removing the potential adverse effects associated with the use of classical 

adjuvants. The structure of polymers can easily be altered, thus the size, charge, mucoadhesion of 

the nanoparticle vaccines can be adjusted. Nanoparticle vaccines that self-assemble from polymer-

antigen conjugates have only been developed recently [69].  
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Figure 2. Schematic representation of the application of polyacrylates in vaccine development. 

Linear and branched alkyne derivatives of polyacrylates (1-4) were conjugated to the chosen 

peptide antigen to produce polymer-based vaccine candidates. The conjugates were able to self-

assemble into nanoparticles. This system has been used to deliver the following peptide antigens: B 

cell epitope derived from group A streptococcus M protein - J14 [69-72]; Human Papilloma Virus 

(HPV)-16 E7 protein epitope 8Q, and its derivatives 8Qmin, 8QSer, 8QLys [73-76]. 

 

In 2010, Toth and colleagues had developed the first self-assembled tert-butyl polyacrylate peptide 

antigen conjugate-based vaccine [69]. Polyacrylate dendritic polymer 4 (Figure 2) was obtained via 

successive atom-transfer radical polymerization. Multiple copies of hydrophilic B cell epitope (J14; 

KQAEDKVKASREAKKQVEKALEQLEDKVK) derived from a major GAS virulence factor (M 

protein) were attached to the terminal alkynes of hydrophobic dendrimer 4 via copper-catalyzed 

azide-alkyne cycloaddition (CuAAC) reaction [77, 78] to form amphiphilic conjugate 4-J14. Self-

assembly under solvent exchange conditions resulted in 21 nm particles with a narrow size 

distribution. Subcutaneous immunization with these nanoparticles induced strong systemic humoral 

immune responses in mice. The titers of specific immunoglobulin G (IgG) secreted were similar to 

those induced by complete Freund's adjuvant (CFA). CFA is a powerful adjuvant often used as 

“gold standard” during vaccine development process; however, it is too toxic for human use [79]. 

The conjugation between polymer and peptide was crucial to induce immune responses as physical 

mixture of polymer and antigen did not induce antibody production. These nanoparticles were also 
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able to induce high IgG titers after intranasal administration [70]. This antibody was able to 

partially opsonize one of the common GAS strains. Interestingly, when polymer 2 (Figure 2) was 

conjugated to J14 epitope, the conjugate formed larger nanoparticles (~500 nm) than their 4-J14 

counterpart [71]. The larger particles induced significantly lower IgG titers than the CFA-

adjuvanted control or 4-J14 (20 nm). Finally, a small library of polyacrylates 1-4 were investigated, 

which upon conjugation with peptide bearing J14 epitope and pan DR epitope (PADRE) universal 

T-helper (used to target the immunologically diverse “outbred” human population) formed large 

nanoparticles (100–1000 nm) [72]. All of them induced a strong humoral immune response, 

equipotent to that of CFA, despite the relatively large size of the particles. These antibodies 

efficiently killed clinical GAS isolates in opsonization experiments. Thus, the polyacrylate-

polymer-based delivery system was an effective means of inducing a strong humoral immune 

response in both inbred and outbred mousel model.  

Liu et al. applied a polyacrylate-based self-assembled nanoparticle delivery system to induce 

cellular immune responses and designed several therapeutic vaccine candidates against human 

papilloma virus (HPV)-related cancer (Figure 2) [73-76]. Initially, polyacrylate 3 was chosen as a 

polymeric core and 8Q (QAEPDRAHYNIVTFCCKCD; E744−62) epitope from human papilloma 

virus (HPV-16) E7 protein as an antigen. The 8Q epitope sequence contains cysteines that may 

form disulfide bonds and result in uncontrolled aggregation of conjugates. Therefore, three 

modified epitopes, 8QSer (QAEPDRAHYNIVTFSSKSD), 8QLys (QAEPDRAHYNIVTFSKKKK), 

and 8Qmin (QAEPDRAHYNIVTF) were designed and conjugated to the polymer 3. The polymer-

peptide conjugates were self-assembled in water to form small nanoparticles (~26 nm, 3-8QLys), big 

nanoparticles (~530 nm, 3-8QSer) and microparticles (>1 μm, 3-8Qmin). However, all of the 

conjugates aggregate to form microparticles (~10 μm) when formulated in phosphate-buffer saline 

(PBS) for the immunization study.  

The  microparticles were tested in an in vivo tumor challenge model in C57BL/6 mice. An emulsion 

of the 8Q epitope and incomplete Freunds adjuvant (IFA)-like adjuvant (Montanide IS A51) was 
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used as the positive control [73]. Compound 3-8Qmin initiated stronger immune responses and 

tumor growth was slower in mice vaccinated with 3-8Qmin than with the positive control.  The 8Qmin 

epitope was most effective in the tumor challenge study, thus it was conjugated to polyacrylate 

polymers that varied in their level of branching (1-4) [74]. All polymer-peptide vaccine candidates 

were able to self-assemble into microparticles with size range 12−17 μm, and a narrow size 

distribution (span 1.1-2.0). The dendrimer with highest level of branching induced the strongest 

antitumor responses in a tumor challenge study. The survival rate of mice vaccinated with 1-8Qmin, 

2-8Qmin and 4-8Qmin was 90%, while only 40% of mice survived when immunizaed with the IFA-

like adjuvant. Importantly, all mice immunized with 4-8Qmin which survived were tumor free at the 

end of the experiment. Conjugate 4-8Qmin also had the most efficient uptake by APCs and 

stimulated strong CD4
+
 and CD8

+
 T cell activation. In immune cell depletion experiment, it was 

confirmed that CD8
+
 T cells were crucial for vaccines anticancer activity [80].  

 

Other polymers have been used to form self-assembled nanoparticle systems. Perrier and colleagues 

conjugated two different length epitopes (GSTA and GVTSAPDTRPAPGSTAPPAH) from 

extracellular variable number tandem repeat region of cancer-associated glycoprotein MUC1 to 

poly(n-isopropyl acrylamide) by CuAAC reaction, respectively, to produce vaccine candidates [81]. 

The vaccine candidates were able to self-assemble into 20 nm and 130 nm nanoparticles, 

respectively. However, the efficacy of these nanoparticles was not confirmed in an immunization 

experiment. Hubbell and coworker developed a poly(ethylene glycol)-stabilized poly(propylene 

sulfide) core nanoparticle (PEG-PPS) polymer that self-assembled to form 25 nm nanoparticles [82]. 

When ovalbumin (OVA) antigen was conjugated to the PEG-PPS nanoparticles via a disulfide bond, 

the particle size increased to 35 nm. Upon the intradermal immunization, this vaccine candidate 

induced higher antibody titres but lower cytokine production than soluble antigen alone. Keller et al. 

also conjugated OVA to self-assembled amphiphilic diblock copolymers poly(HPMA-co-pyridyl 

disulfide methacrylamide (PDSMA))-b-(PAA-co-poly(dimethylaminoethyl methacrylate)-co-butyl 
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methacrylate(BMA)) to form 30 nm (pH = 7.4) nanoparticles [83]. In this case, the polymer was 

allowed to self-assemble before OVA protein was conjugated to the particle via a disulfide bond. 

The conjugate was more efficiently taken up by APCs and, after subcutaneous immunization, 

induced stronger interferon gamma (IFN-γ) production (a correlate of T cell activity) than a 

physical mixture of OVA protein and carrier.  

Although polymer based self-assembled nanostructures are very effective at stimulating immune 

responses, they are not fully defined. The lengths of polymers cannot be precisely controlled during 

the polymerization reaction. This is a disadvantage from a regulatory perspective because it may 

influence the size of the vaccine particles. Indeed, relationship between degree of polymerization 

and size of self-assembled polymer nanoparticle was reported [84]. Additionally, the conjugation 

between the polymer and specific epitopes often produce products with variable degree of 

substitution. Although non-biodegradable polymers can form stable nanoparticles, the potential in 

vivo toxicity of this type of material must be considered. In the case of biodegradable polymers, the 

properties (for example size, charge, etc.) of nanovaccines may change before the vaccine can reach 

its target in the body, and thus such vaccine may not induce the desired immune response [3]. 

Consequently, other materials have been investigated for the development of peptide-based subunit 

vaccines. 

 

Lipid-based self-assembled nanostructure 

Lipids are one of the most important biomolecules in the nature. They are involved in energy supply; 

are the main components of biological membranes; act as steroidal hormones, enzyme activators, 

growth factors, signaling molecules in the neural system, and antioxidants in living organisms. In 

the immune system they often play role of “danger signal” via activation of the toll like receptors 

(TLRs) such as TLR2 and TLR4. These receptors are important membrane proteins present on the 

surface of APCs that can activate the immune system in response to foreign substances such as 

lipopolysaccharides or lipopeptides present on the membranes of microbial pathogens [31, 85, 86]. 
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With the exception of aluminum- and virus like particle (VLPs)-based adjuvants, all other adjuvants 

in commercial vaccines are lipid-based formulations (i.e. AF03, MF59, AS03, AS04 and liposomes).  

Several lipidic self-assembled nanoparticle vaccine candidates have been developed using the 

amphiphilic properties of lipid-peptide conjugates. One of most intensively studied lipidic delivery 

systems, the lipid-core peptide (LCP), was first proposed in 1993 by Toth et al. (Figure 3) [87]. This 

system incorporated peptide epitopes, a branching moiety, and lipids (e.g. 5) linked together by 

covalent bonds to produce a single-molecule vaccine candidate. Similar to other amphiphilic 

conjugates, LCP-based vaccine candidates could self-assemble into nano- or microparticles under 

aqueous conditions [88-90] (Figure 3). Moreover, the lipidic moiety in LCP is recognized by TLR2, 

thus has self-adjuvanting properties [91], is preferentially taken up by APCs, and induced strong 

immune responses against the incorporated antigens [92, 93]. For example, Fuaad et al. synthesized 

an LCP-based vaccine candidate against schistosomiasis carrying an epitope (p2, 

KQAEDKVKAGPTDEIQKINAKQLEDKVK) derived from cathepsin D hemoglobinase [94, 95]. 

The conjugate self-assembled into nanoparticles with diameters of 30-80 nm. The p2-LCP induced 

high IgG titers after subcutaneous injection, similar to those triggered by the positive control: a 

CFA-adjuvanted p2 epitope. Moreover, the anti-p2 antibodies neutralized the enzymatic activity of 

the Schistosoma cathepsin D.  

An LCP-based system was also applied in hookworm vaccine development [96, 97]. Protease Na-

APR-1 was chosen as the target antigen because of its involvement in the hookworm digestive 

system. A neutralizing B cell epitope (A291Y, AGPKAQVEAIQKY) from this protein was chosen 

as the peptide epitope for conjugation into the LCP system. Several LCP vaccine candidates were 

synthesized with varying levels of branching. The A291Y epitope was modified to adopt helical or β-

sheet conformations. All compounds were able to self-assemble into nanoparticles with diameters 

ranging from 12 nm to 43 nm. Interestingly, only the epitope that retained its β-sheet conformation 

when conjugated to the LCP was able to induce production of antibodies that recognized the parent 
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protein. This result indicated the importance of epitope conformation for peptide subunit vaccine 

development. Importantly, both series of vaccine candidates that targeted hookworm and 

Schistosoma did not induce any hemolytic effect and were not toxic in vitro even at a high 

concentration (100 μM) [95, 97].  

Vaccine candidates based on the LCP system against Streptococcus pyogenes have been also 

investigated [88, 89, 98]. For example, two types of epitopes were incorporated into LCP: B cell 

epitopes FNBR-B (VETEDTKEPGVLMGGQSESVEFTKDTQTGM) or FNBR-BT 

(EFTKDTQTGMSGQTTPQVETEDTKEPGVLM) from highly conserved fibronectin-binding 

repeat region (FNBR) of SfbI protein and J14 from the helical C repeat region of M protein [98]. 

Three monoepitopic vaccine candidates have also been synthesized (LCP bearing FNBR-B, FNBR-

BT or J14). All the conjugates were able to self-assemble into particles with very distinct sizes, 

ranging from a few nanometers to submicron/microparticles. LCPs that bore hydrophilic epitopes 

formed small nanoparticles, while the incorporation of more hydrophobic peptides into LCP 

triggered the formation of larger particles. Thus balance between hydrophilic and hydrophobic 

properties of LCP component was crucial to controlling the size of the resultant nanoparticle.  

Variations in the length, number, and position of lipids in the conjugate can significantly influence 

the particles self-assembly. For example, lipopeptide that carried short lipids adopted random coil 

secondary structure and self-assembled in nanoparticles while longer lipids induced β-sheet 

formation and the production of fibrils [99]. These structural differences may influence the 

immunological properties of particle-based vaccines.  For instance, size was found to play an 

important role when LCP-based vaccines were administered intranasally. Smaller nanoparticles (5-

10 nm) were taken up more efficiently by APCs and strongly enhanced APC-maturation to generate 

robust immune responses, in comparison to bigger particles (~ 100 nm) [100]. Furthermore, 

lipopeptides that carried longer lipids induced stronger immune responses than shorter analogues 

[101].  
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Figure 3. Schematic representation of LCP vaccine synthesis and self-assemble.  

  

The LCP system has also been applied to the delivery of multiepitope-based polypeptides [102]. A 

semisynthetic vaccine against GAS was produced by maleimide conjugation of LCP lipidic moiety 

5 obtained using simple chemical synthesis and recombinant polypeptide, expressed in Escherichia 

coli. The recombinant polypeptide was designed as a linear combination of multiple epitopes (eight 

B cell epitopes and one T helper epitope) derived from M protein. The lipopolypeptide self-

assembled into 39-43 nm diameter particles. Although the vaccine candidate stimulated an immune 

response against the recombinant polypeptide after subcutaneously injection in C57BL/6 mice, the 

IgG titers against several epitopes contained within the lipopolypeptide were weaker than those 

induced by the CFA-adjuvanted polypeptide.  The disulfide bond between cysteines, present in the 

polypeptide, may have changed the conformation of those epitopes, reducing the epitope-specific 

humoral immune response. 

Other lipid moieties have also been used in self-assembled peptide vaccine development. For 

example, Accardo et al. conjugated lipid 6 to epitopes gB498−505 (SSIEFARL) and gD301−309 

(SALLEDPVG) from HSV envelope glycoprotein B (gB) and glycoprotein D (gD), respectively, to 

develop a self-assembled vaccine candidate [103]. The conjugates formed 50-80 nm nanoparticles. 

The vaccine candidates induced more cytokine production (e.g. IL-6, IL-8, TNF-α and IL-23) than 

positive control lipopolysaccharide.  
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Dipalmitoyl-S-glyceryl cysteine (Pam2Cys, 7) and tripalmitoyl-S-glyceryl cysteine (Pam3Cys, 8) 

are popular TLR2 ligands in vaccine development. For example, Jackson and coworkers developed 

a hepatitis C virus (HCV) vaccine candidate by conjugating CD4
+ 

T-helper and CD8
+
 T cell 

epitopes from HCV NS5B protein (NS5B2594–2602; ALYDVVTKL) to 7 [104]. The conjugate 

induced strong epitope-specific cellular immune responses measured through the production of 

IFN-γ. Wilkinson et al. conjugated 7 to tumor-associated MUC1 epitopes (peptide or glycopeptide) 

to produce vaccine candidates against breast cancer [105]. These compounds self-assembled into 

12-20 nm particles and stimulated the production of anti-MUC1 antibodies after intradermal 

immunization. However, the strength of humoral immune responses was not compared to classical 

adjuvanting system, and therefore the efficacy of the delivery system could not be appraised.  

  

 

Figure 4. Examples of lipid moieties (5-10) present in lipid-based self-assembled nanostructures.  
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Tirrell and coworkers incorporated a lipid building block (9) to cytotoxic T cell epitope OVA253-266 

(EQLESIINFEKLTE) to develop a self-assembling and self-adjuvanting vaccine delivery system 

[106]. The conjugate formed 5–11 nm diameter and 50 nm–300 nm fiber-like cylindrical 

nanoparticles. The vaccine candidate (9-OVA253-266) induced a strong cellular immune response in a 

tumor challenge experiment. Mice treated with the conjugate developed smaller tumors and had 

significantly higher survival rates than those immunized with an emulsion of IFA and OVA253-266. 

Lipid 9 was also conjugated to GAS B cell epitopes J8 

(QAEDKVKQSREAKKQVEKALKQLEDKVQ) [107]. This conjugate formed 5–15 nm diameter 

and 200 nm–2 µm long cylindrical nanoparticles. The IgG antibody titer induced by this vaccine 

candidate was similar to those triggered by epitopes adjuvanted with IFA. The authors suggested 

that despite similarity of lipid structure to a typical TLR2 ligand (i.e. Pam2Cys) the immune 

responses induced by the lipopeptide were not mediated by TLR2.  

 

Recently, Hussein conjugated different lipidic moieties (7 and 10) to HPV cytotoxic T lymphocyte 

(CTL) epitopes E643–57 (QLLRREVYDFAFRDL) and 8Qmin to produce self-assembled 

nanovaccines [108]. 10-(8Qmin)E643–57 formed 350-750 nm nanoparticles, while 7-(8Qmin)E643–57 

formed much larger particles (>5μm). The nanoparticles induced a stronger cellular immune 

response than the microparticles. Interestingly, a vaccine candidate that bore the well-known TLR2 

receptor agonist Pam2Cys (7) did not induce a significant cellular immune response. The 7-

(8Qmin)E643–57 formed rather large aggregates than particles; therefore, it was suggested that the 

conjugate poor aqueous solubility was the key factor influencing their vaccine candidate 

performance. Significantly, a vast number of lipopeptides have been reported as vaccine candidates 

to date [92, 109]; however, their ability to form particles has not been commonly explored.  
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Although lipid-peptide conjugates are able to induce a strong immune response, the potential 

toxicity of lipopeptides needs to be taken into account. Therefore, self-assembled peptide 

nanovaccines that only consist of peptide components are an important alternative. 

 

Peptide-based self-assembled nanostructures 

In contrast to classical polymers described above, peptide-based self-assembled nanostructures are 

fully defined structures. Peptides are heteropolymers composed of amino acids (typically 2-50 

units), while polypeptides, similar to proteins, usually have sequences longer than 50 amino acids. 

Peptides that are longer than a few amino acids can form secondary structures like α-helix or β-

sheet, which further may self-assemble to form nanostructures. With the development of modern 

chemistry, including solid phase synthesis, practically any peptide can be obtained synthetically 

with high purity.  

 

 

 

 

Figure 5. Schematic representation of a self-assembling peptide (SAP)-based vaccine. 
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When a peptide carrier with self-assembling properties is conjugated to a peptide epitope, the 

resulting conjugate may retain self-assembly properties of carrier, and therefore form 

nanostructures under aqueous conditions. Lustig, Burkhard and coworkers used in silico modeling 

to design a helical self-assembling polypeptide (SAP) 

(DEMLRELQETNAALQDVRELLRQQVKQITFLKCLLMGGRLLCRLEELERRLEELERRLEE

LERR) that self-assembled into regular polyhedral nanoparticles (Figure 5) [110, 111]. Several 

vaccine candidates have been produced based on this peptide carrier and its derivatives. For 

example, vaccine candidate P6HRC1 was obtained by conjugating a peptide carrier to a B cell 

epitope from severe acute respiratory syndrome (SARS) B HRC1 spike protein and self-assembled 

by dialysis against the refolding buffer [112]. The diameter of the P6HRC1 nanoparticle was 

approximately 25 nm, while SAP alone formed smaller nanoparticles (16 nm). Mice immunized 

with P6HRC1 produced antibodies with high binding affinity for the native protein, confirming that 

the delivery system presented the epitopes in the desired conformation.  

The SAP strategy was also used to develop a malaria vaccine [113]. A tandem repeat of the B cell 

immunodominant repeat epitope (DPPPPNPN)2D from malaria Plasmodium berghei 

circumsporozoite protein (PbCSP) gene was incorporated to the SAP gene, and the vaccine 

candidate called P4c-Mal was produced by expression in Escherichia coli. This vaccine candidate 

induced a strong immune response against the incorporated B cell epitope and 60% of mice 

survived a double challenge with live sporozoites after receiving three doses of P4c-Mal.  

The SAP derivatives that self-assembled into nanoparticles were also applied to the design of a 

vaccine against human immunodeficiency virus (HIV) [114]. A self-assembling polypeptide that 

consisted of two covalently linked peptide domains was derived from SAP. This carrier peptide was 

conjugated to the membrane proximal external region of HIV-1 gp41 protein. The conjugate formed 

25-40 nm nanoparticles. Both intraperitoneal immunization of the conjugate with IFA and 
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intradermal vaccination without adjuvant were then performed on outbred Sprague–Dawley rats. 

The SAP analogue stimulated humoral immunity against the incorporated antigen; however, these 

antibodies were not able to neutralize the HIV-1 gp41 protein.  

 

Figure 6. Schematic representation of self-assembled nanofiber vaccine. 

 

The ability of peptides that adopt β-sheet conformation to form fibers is a well-known natural 

phenomenon. For example, β-sheet amyloid peptides involved in Alzheimer disease spontaneously 

form fibrils in the human brain [115]. Waku et al. attempted to develop a novel vaccine candidate 

based on self-assembled nanofibers (Figure 6) [116]. A peptide that forms a β-sheet (FVIFLD) was 

conjugated with a peptide epitope OVA257-264 (SIINFEKL) and a highly hydrophilic cell-penetrating 

peptide TAT (RKKRRQRRR) to form a linear oligopeptide. When incubated in 150 mM saline, 

this compound formed nanofibers that were a few micrometres long, but was unable to self-

assemble when incubated in water. These fibers were trimmed into 240 ± 100 nm lengths by 

extrusion through a membrane filter with a 0.45 μm pore diameter. The width and height of the 

nanofibers, estimated by TEM and atomic-force microscopy (AFM), were ~7 nm and ~4nm, 

respectively. The nanofibers were taken up more efficiently by murine macrophage-like cells 

(RAW264) than OVA257-264-TAT or OVA257-264 peptides. However, it was not reported whether this 

system could to induce an immune response in vivo.  

Collier and coworkers examined another fibrillizing peptide (Q11; QQKFQFQFEQQ) for its ability 

to serve as carrier for OVA323-339 (ISQAVHAAHAEINEAGR) [117]. Q11 peptide was conjugated 
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with the OVA323-339 epitope by a Ser-Gly-Ser-Gly spacer, and the conjugate self-assembled into 

nanofibers in aqueous environments that contained salt. The unbranched nanofibers were 

approximately 15 nm wide and micron scale in length. The titers of IgG induced by the nanofiber 

vaccine and the emulsion of CFA with OVA323-339 were comparable, while the unconjugated 

physical mixture of the peptides did not induce antibody production. However, the dose of vaccine 

candidate (around 0.3 mg per mouse per injection) used in this immunization study was about 10-

fold higher than typical doses used for other self-assembled vaccine delivery systems (0.03 mg per 

mouse per injection). The nanofiber forming peptide (Q11) did not induce cytotoxicity or 

inflammation, in contrast to Alum adjuvant (Imject Alum), when examined with a macrophage cell 

line (J774.1 cells) [118]. Upon immunization with Q11-OVA, the titers of OVA specific antibody 

were as high as induced by the emulsion of OVA epitopes and CFA, and significantly higher than 

the alum adjuvanted OVA epitopes.   

The same fibrillizing peptide (Q11) was conjugated to the malaria B cell epitope (NANP)3 

(NANPNANPNANP) derived from the circumsporozoite protein of Plasmodium falciparum. The 

(NANP)3-Q11 conjugate self-assembled into nanofibers. The conjugate induced humoral immune 

responses against Plasmodium falciparum circumsporozoite protein when delivered subcutaneously 

in a mouse model [119]. Another peptide that spontaneously assembles into nanofibers 

(FKFEFKFE; KFE8) was also investigated in combination with OVA323-339 peptide and compared 

with the OVA-Q11 conjugate. No significant differences in immune responses were observed, 

suggesting that nanofiber formation is responsible for adjuvanting activity, not the specific carrier-

peptide sequence [120].  

Azmi et al. also tried to develop peptide-based self-assembling nanofiber vaccines against GAS 

infection [121]. J14 GAS epitope was covalently linked to Q11 via a spacer. However, the resultant 

compound formed nanoparticles instead of the expected nanofibers and did not induce significant 

IgG production in mice when compared with PBS. The poor immunogenicity of the construct might 
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be related to the low dose used for the immunization study (30 μg in comparison to 300 μg typically 

use for Q11 conjugates) [117, 119]). Interestingly, when two copies of lipid moiety 5 were 

conjugated to Q11-J14 (or J14 alone), the formed nanoparticles (at 30 μg dose) induced high 

antibody titers, similar to those triggered by J14 emulsified with CFA. Therefore, the fibrillizing 

peptide’s self-adjuvanting ability was weaker than that of the lipids. Recently, poly-β-branched 

amino acids were also suggested as delivery platform for vaccines [122]. It was demonstrated that B 

cell epitopes derived from GAS M protein formed water soluble molecules when conjugated to 

valine-rich isopeptides (depsipeptides). However, upon change in pH from acidic to neutral, the 

isopeptides undergo an O-N acyl migration reaction to form the linear “parent” peptide. This 

peptide adopted a β-sheet conformation and promptly aggregated into fibrils. The immunogenic 

properties of these fibrils have not been reported yet.  

In summary, β-sheets are one of the most prevalent secondary structures in protein conformation, 

thus the nanofibers approach seems to be more “natural” and safe than other self-assembly 

strategies. Thus, further investigation into the role of nanofibres in vaccine development is an area 

of growing interest.  

 

Conclusion 

Self-assembly is becoming a popular method for producing nanostructure-based vaccines. 

Nanoparticles built from polymers or lipids are the most widely used for antigen delivery.  However, 

the potential use of nanofibers as antigen carriers cannot be neglected. The low toxicity and high 

biocompatibility of most self-assembled materials makes them more valuable for vaccine 

formulation than classical adjuvants. Self-assembly inducers are often recognized by receptors on 

immune cells and therefore nanostructures display self-adjuvanting properties, removing the need to 
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use toxic adjuvants. Moreover, self-assembled antigen-carrier conjugates usually have well-defined 

chemical structures.  

Despite these advantages, self-assembled vaccines have some drawbacks, which may influence 

their chance for commercialization. In the case of polymer-based self-assembled vaccines, 

polymerization reactions used in their production do not form a single product with a defined 

molecular weight. Some polymer-based particles also have poor biodegradability, thus careful 

polymer selection is required to avoid adverse effects associated with polymer accumulation in the 

tissues. The optimal balance between biodegradability and stability must be found. Polymers that 

degrade too quickly may cause the nanovaccine to change its properties (e.g. size) before it can 

reach its destination (lymph nodes, APCs, etc.).  

Lipid-based self-assembled nanostructures also face obstacles, particularly toxicity, membrane 

disruption, and poor induction of cellular immunity. One of the most efficient lipidic adjuvant, 

Lipid A, is highly toxic. Therefore, the hemolytic and toxicity properties of lipopeptides must be 

examined. Fortunately, several lipopeptides are highly immunogenic and non-toxic (e.g. LCP 

system). Although lipopeptides rarely induce a strong cellular immune response, one possible 

solution is to incorporate APC-targeting moieties into the self-assembly system to allow better 

antigen cross-presentation. In addition, some lipids are normally racemic (e.g. Pam2Cys) and 

therefore form a diastereomeric mixture when conjugated to the peptide.  Each diastereoisomer may 

have a different safety and activity profile.  

The disadvantage of peptide-based carriers is the low immunogenicity of the formed conjugates.  

Thus high dose is required to stimulate desired immune response which might be a potential 

obstacle in development of peptide-carrier-based self-assembled nanostructure. 

Limited understanding of the interaction between the nanostructure vaccine and immune cell 

receptors hinders the development of self-assembled nanostructure vaccines. Investigation of 

conjugates’ stability under different conditions, APC uptake and targeting, T cell activation, DC 
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maturation, cytokine profiling, and the recognition of the conjugate by receptors on human and 

animal tissue is a task for the future. However, once these areas are understood, self-assembled 

nanostructure vaccines can be developed to exploit these opportunities.  

The majority of self-assembled conjugates are monovalent, carrying a single epitope/antigen, and 

therefore can only induce immune responses against one targeted subtype of pathogen. The self-

assembly process offers a critical advantage: several different building blocks, each bearing a 

different epitope, can be mixed to self-assemble into a single multiantigenic nanostructure.  

Overall, the application of a self-assembled strategy to the development of peptide-based vaccines 

has demonstrated that polymer-, lipid- and peptide-based delivery systems can overcome the low 

immunogenicity of peptide antigens without causing adverse effects. Thus, the use of self-

adjuvanting particles could eliminate the requirement for toxic adjuvants in vaccine design. 

Although no peptide subunit vaccines are commercially available, it is expected that in the near 

future, multivalent self-assembled nanoparticles with higher immune efficacy and lower toxicity 

will appear on the market.  
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