56 research outputs found

    Novel method for detection of glycogen in cells

    Get PDF
    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions

    Molecular Structural Differences between Type-2-Diabetic and Healthy Glycogen

    Get PDF
    Glycogen is a highly branched glucose polymer functioning as a glucose buffer in animals. Multiple-detector size exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis were used to examine the structure of undegraded native liver glycogen (both whole and enzymatically debranched) as a function of molecular size, isolated from the livers of healthy and db/db mice (the latter a type 2 diabetic model). Both the fully branched and debranched levels of glycogen structure showed fundamental differences between glycogen from healthy and db/db mice. Healthy glycogen had a greater population of large particles, with more α particles (tightly linked assemblages of smaller β particles) than glycogen from db/db mice. These structural differences suggest a new understanding of type 2 diabetes

    C. elegans SWAN-1 Binds to EGL-9 and Regulates HIF-1-Mediated Resistance to the Bacterial Pathogen Pseudomonas aeruginosa PAO1

    Get PDF
    Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing

    Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes

    Get PDF
    AbstractIn human erythrocyte membranes incubated with [adenylate-32P]NAD the 36 kDa protein is predominantly labeled. The labeling is greatly stimulated by nitroprusside in the presence of dithiothreitol. We have purified the 36 k Da protein and identified this modification as crysteine-specific mono(ADP-ribosylation) because: (i) labeling occured only when [32P]NAD was replaced by adenine [U-14C]NAD, but not by [carbonyl-14C]NAD; (ii) treatment of the prelabeled protein with snake venom phosphodiesterase led to releasing 5′-[32P]AMP; (iii) the bond between the protein and the nucleotide was hydrolyzed by HgCl2, but was resistant to hydroxylamine. The 36 kDa protein reacted on Western blots with two different monoclonal antibodies (MAbs) against glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and was immunoprecipitated by both MAbs

    Control of mammalian glycogen synthase by PAS kinase

    No full text
    The regulation of glycogen metabolism is critical for the maintenance of glucose and energy homeostasis in mammals. Glycogen synthase, the enzyme responsible for glycogen production, is regulated by multisite phosphorylation in yeast and mammals. We have previously identified PAS kinase as a physiological regulator of glycogen synthase in Saccharomyces cerevisiae. We provide evidence here that PAS kinase is an important regulator of mammalian glycogen synthase. Glycogen synthase is efficiently phosphorylated by PAS kinase in vitro at Ser-640, a known regulatory phosphosite. Efficient phosphorylation requires a region of PAS kinase outside the catalytic domain. This region appears to mediate a direct interaction between glycogen synthase and PAS kinase, thereby targeting kinase activity to this substrate specifically. This interaction is regulated by the PAS kinase PAS domain, raising the possibility that this interaction (and phosphorylation event) is modulated by the cellular metabolic state. This mode of regulation provides a mechanism for metabolic status to impinge directly on the cellular decision of whether to store or use available energy
    • …
    corecore