498 research outputs found

    How to Generate Four-Fermion Phase Space

    Get PDF
    We present a scheme for integrating the matrix element of an arbitrary e^+e^-\to f_1f_2\bar f_3\bar f_4 process over the complete four-fermion phase space, or its any part, by means of the Monte Carlo technique. The presented algorithm has been successfully implemented in the KORALW Monte Carlo code.Comment: 16 page

    Four-quark final state in W-pair production: Case of signal and background

    Get PDF
    We discuss theoretical predictions for W-pair production and decay at LEP2 and higher energies in a form suitable for comparison with raw data. We present a practical framework for calculating uncertainties of predictions given by the KORALW and grc4f Monte Carlo programs. As an example we use observables in the ssˉccˉs\bar s c\bar c decay channel: the total four-quark (four-jet) cross section and two-quark/jet invariant-mass distribution and cross section, in the case when the other two may escape detection. Effects of QED bremsstrahlung, effective couplings, running W and Z widths, Coulomb interaction and the complete tree level set of diagrams are discussed. We also revisit the question of technical precision of the new version 1.21 of the KORALW Monte Carlo code as well as of version 1.2(26) of the grc4f one. Finally we find predictions of the two programs to have an overall physical uncertainty of 2%. As a side result we show, on the example of an ssˉs\bar s invariant mass distribution, the strong interplay of spin correlations and detector cut-offs in the case of four-fermion final states.Comment: 26 pages, LaTe

    Coherent Exclusive Exponentiation for Precision Monte Carlo Calculations of Fermion Pair Production / Precision Predictions for (Un)stable W+W- Pairs

    Get PDF
    We present the new Coherent Exclusive Exponentiation (CEEX), in comparison to the older Exclusive Exponentiation (EEX) and the semi-analytical Inclusive Exponentiation (IEX), for the process e+e- -> f-bar f + n(gamma), f=mu,tau,d,u,s,c,b, with validity for centre of mass energies from tau lepton threshold to 1 TeV. We analyse 2f numerical results at the Z-peak, 189 GeV and 500 GeV. We also present precision calculations of the signal processes e+e- -> 4f in which the double resonant W+W- intermediate state occurs using our YFSWW3-1.14 MC. Sample 4f Monte Carlo data are explicitly illustrated in comparison to the literature at LEP2 energies. These comparisons show that a TU for the signal process cross section of 0.4 percent is valid for the LEP2 200 GeV energy. LC energy results are also shown.Comment: 5 pages, 4 figures, Presented at ICHEP200

    W-Pair Production with YFSWW/KoralW

    Get PDF
    A theoretical description of W-pair production in terms of two complementary Monte Carlo event generators YFSWWand KoralW is presented. The way to combine the results of these two programs in order to get precise predictions for WW physics at LEP2 and LC energies is discussed.Comment: LateX file, 6 pages, conference contributio

    Precision W-pair physics with the YFSWW3 and KoralW Monte Carlos

    Get PDF
    We present the recent developments in the precision studies of W-pair and single-W processes in e+e- collisions achieved with the help of the KoralW and YFSWW3 Monte Carlo generators. We focus on the theoretical precision of the measurements of M_W and anomalous couplings on the example of lambda coupling. We present the mechanism of running these two independent codes in the form of one Concurrent Monte Carlo code. We describe also the extensions of KoralW necessary to emulate the kinematical region of single-W process.Comment: Talk given by M. Skrzypek at 6th International Symposium on Radiative Corrections, 8-13 September 2002, Kloster Banz, German

    Precision Predictions for (Un)Stable WW/4f Production in e +e- Annihilation: YFSWW3/KoralW-1.42/YFSZZ

    Get PDF
    We present precision calculations of the processes e+ e- -> 4-fermions in which the double resonant W+ W- and ZZ intermediate states occur. Referring to these latter intermediate states as the 'signal processes', we show that, by using the YFS Monte Carlo event generators YFSWW3-1.14 and KoralW-1.42 in an appropriate combination, we achieve a physical precision on the WW signal process, as isolated with LEP2 MC Workshop cuts, below 0.5 per cent. We stress the full gauge invariance of our calculations and we compare our results with those of other authors where appropriate. In particular, sample Monte Carlo data are explicitly illustrated and compared with the results of the program RacoonWW of Denner et al. In this way, we cross check that the total (physical oplus technical) precision tag for the WW signal process cross section is 0.4 per cent for 200 GeV, for example. Results are also given for 500 GeV with an eye toward the LC. For the analogous ZZ case, we cross check that our YFSZZ calculation yields a total precision tag of 2 per cent, when it is compared to the results of ZZTO and GENTLE of Passarino and Bardin et al., respectively.Comment: 14 pages, 1 figure, 4 tables, presented at RADCOR2000 by B.F.L. War

    Electric Charge Screening Effect in Single-W Production with the KoralW Monte Carlo

    Get PDF
    Any Monte Carlo event generator in which only initial state radiation (ISR) is implemented, or ISR is simulated independently of the final state radiation (FSR), may feature too many photons with large transverse momenta, which deform the topology of events and result in too strong an overall energy loss due to ISR. This overproduction of ISR photons happens in the presence of the final state particle close to the beam particle of the same electric charge. It is often said that the lack of the electric charge screening effect between ISR and FSR is responsible for the above pathology in ISR. We present an elegant approximate method of curing the above problem, without actually reinstalling FSR. The method provides theoretical predictions of modest precision: < 2%. It is, however, sufficient for the current 1W data analysis at the LEP2 collider. Contrary to alternative methods implemented in other MC programs, our method works for the ISR multiphotons with finite p_T. Although this method is not an exact implementation of the complete/exact ISR, FSR and their interference, it is very closely modelled on it. We present a variety of numerical results obtained with the newest version of the KoralW Monte Carlo, in which this method is already implemented

    Exact O(α)O(\alpha) Gauge Invariant YFS Exponentiated Monte Carlo for (Un)Stable for (Un)Stable W+W−W^+W^- Production At and Beyond LEP2 Energies

    Full text link
    We realize, by Monte Carlo event generator methods, the exact O}(\alpha)YFSexponentiatedcalculationof YFS exponentiated calculation of e^+e^- \to W^+ W^- (\to f_1\bar f'_1 + \bar f_2 f'_2)atandbeyondLEP2energies,wheretheleft−handedpartsof at and beyond LEP2 energies, where the left-handed parts of f_iand and f'_iaretherespectiveupperandlowercomponentsofan are the respective upper and lower components of an SU_{2L}doublet, doublet, i=1,2.OurcalculationisgaugeinvariantfromthestandpointofitsradiativeeffectsandtherespectiveYFSMonteCarloeventgeneratorYFSWW3,whereinbothStandardModelandanomaloustriplegaugebosoncouplingsareallowed,generates. Our calculation is gauge invariant from the standpoint of its radiative effects and the respective YFS Monte Carlo event generator YFSWW3, wherein both Standard Model and anomalous triple gauge boson couplings are allowed, generates n(\gamma)radiationbothfromtheinitialstateandfromthefinal radiation both from the initial state and from the final W^+ W^-$. Sample Monte Carlo data are illustrated.Comment: 12 pages, 4 figures, 1 Latex file which includes the figure

    The Monte Carlo Program KoralW version 1.51 and The Concurrent Monte Carlo KoralW&YFSWW3 with All Background Graphs and First Order Corrections to W-Pair Production

    Get PDF
    The version 1.51 of the Monte Carlo (MC) program KoralW for all e+e−→f1fˉ2f3fˉ4e^+e^-\to f_1\bar f_2 f_3\bar f_4 processes is presented. The most important change since the previous version 1.42 is the facility for writing MC events on the mass storage device and re-processing them later on. In the re-processing one may modify parameters of the Standard Model in order to fit them to experimental data. Another important new feature is a possibility of including complete O(α){\cal O}(\alpha) corrections to double-resonant W-pair component-processes in addition to all background (non-WW) graphs. The inclusion is done with the help of the YFSWW3 MC event generator for fully exclusive differential distributions (event-per-event). Technically, it is done in such a way that YFSWW3 runs concurrently with KoralW as a separate slave process, reading momenta of the MC event generated by KoralW and returning the correction weight to KoralW. KoralW introduces the O(α){\cal O}(\alpha) correction using this weight, and finishes processing the event (rejection due to total MC weight, hadronization, etc.). The communication between KoralW and YFSWW3 is done with the help of the FIFO facility of the UNIX/Linux operating system. This does not require any modifications of the FORTRAN source codes. The resulting Concurrent MC event generator KoralW&YFSWW3 looks from the user's point of view as a regular single MC event generator with all the standard features.Comment: 8 figures, 5 tables, submitted to Comput. Phys. Commu
    • …
    corecore