85 research outputs found

    Accessing ns–μs side chain dynamics in ubiquitin with methyl RDCs

    Get PDF
    This study presents the first application of the model-free analysis (MFA) (Meiler in J Am Chem Soc 123:6098–6107, 2001; Lakomek in J Biomol NMR 34:101–115, 2006) to methyl group RDCs measured in 13 different alignment media in order to describe their supra-τc dynamics in ubiquitin. Our results indicate that methyl groups vary from rigid to very mobile with good correlation to residue type, distance to backbone and solvent exposure, and that considerable additional dynamics are effective at rates slower than the correlation time τc. In fact, the average amplitude of motion expressed in terms of order parameters S2 associated with the supra-τc window brings evidence to the existence of fluctuations contributing as much additional mobility as those already present in the faster ps-ns time scale measured from relaxation data. Comparison to previous results on ubiquitin demonstrates that the RDC-derived order parameters are dominated both by rotameric interconversions and faster libration-type motions around equilibrium positions. They match best with those derived from a combined J-coupling and residual dipolar coupling approach (Chou in J Am Chem Soc 125:8959–8966, 2003) taking backbone motion into account. In order to appreciate the dynamic scale of side chains over the entire protein, the methyl group order parameters are compared to existing dynamic ensembles of ubiquitin. Of those recently published, the broadest one, namely the EROS ensemble (Lange in Science 320:1471–1475, 2008), fits the collection of methyl group order parameters presented here best. Last, we used the MFA-derived averaged spherical harmonics to perform highly-parameterized rotameric searches of the side chains conformation and find expanded rotamer distributions with excellent fit to our data. These rotamer distributions suggest the presence of concerted motions along the side chains

    Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr

    Get PDF
    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [H-1, C-13]-D-glucose in similar to 100% D2O, which yields CHD2 methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using C-13 TOCSY NMR spectroscopy, as was recently demonstrated (Often, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure H-1 CPMG relaxation dispersion profiles for CHD2 methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-delta 1 and Thr-gamma 2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong C-13 scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone N-15 CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the H-1 line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 +/- 0.5) x 10(3) per second (i.e., tau(ex) = 64.7 +/- 1.9 mu s). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by H-1 CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone N-15 relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins

    Comparison of solid-state dipolar couplings and solution relaxation data provides insight into protein backbone dynamics.

    No full text
    Analyses of solution 15N relaxation data and solid-state 1HN−15N dipolar couplings from a small globular protein, α-spectrin SH3 domain, produce a surprisingly similar pattern of order parameters. This result suggests that there is little or no ns−μs dynamics throughout most of the sequence and, in particular, in the structured portion of the backbone. At the same time, evidence of ns−μs motions is found in the flexible loops and termini. These findings, corroborated by the MD simulations of α-spectrin SH3 in a hydrated crystalline environment and in solution, are consistent with the picture of protein dynamics that has recently emerged from the solution studies employing residual dipolar couplings

    A new structural arrangement in proteins involving lysine NH3 + group and carbonyl

    No full text
    Abstract Screening of the Protein Data Bank led to identification of a recurring structural motif where lysine NH3 + group interacts with backbone carbonyl. This interaction is characterized by linear atom arrangement, with carbonyl O atom positioned on the three-fold symmetry axis of the NH3 + group (angle Cε-Nζ-O close to 180°, distance Nζ-O ca. 2.7-3.0 Å). Typically, this linear arrangement coexists with three regular hydrogen bonds formed by lysine NH3 + group (angle Cε-Nζ-acceptor atom close to 109°, distance Nζ-acceptor atom ca. 2.7-3.0 Å). Our DFT calculations using polarizable continuum environment suggest that this newly identified linear interaction makes an appreciable contribution to protein’s energy balance, up to 2 kcal/mol. In the context of protein structure, linear interactions play a role in capping the C-termini of α-helices and 310-helices. Of note, linear interaction involving conserved lysine is consistently found in the P-loop of numerous NTPase domains, where it stabilizes the substrate-binding conformation of the P-loop. Linear interaction NH3 + – carbonyl represents an interesting example of ion-dipole interactions that has so far received little attention compared to ion-ion interactions (salt bridges) and dipole-dipole interactions (hydrogen bonds), but nevertheless represents a distinctive element of protein architecture

    Optimization of technology for production of products of deep drawing sheet steels with the use of lubricants in universal software system ANSYS workbench

    No full text
    The techniques and laboratory tests, simulating the technological process of drawing sheet steels with water soluble lubricant PB-18 with a fractal structure, with the addition of nanopowders of copper and bronze. Given optimization of the stretching process of sheet steels using universal software system of finite-element analysis ANSYS Workbenc

    Assessment of integrated index of environmental units of the transport system

    No full text
    Transport-technological complex environmental impact, drivers and participants in the transport process exhaust gases, products of wear of tires, road surface, brake pads and discs and other harmful substances.. Proposed air pollution on roads and highways to estimate the complex index of atmospheric pollution transport and technological complex (APITTC)

    >

    No full text

    Optimization of technology for production of products of deep drawing sheet steels with the use of lubricants in universal software system ANSYS workbench

    No full text
    The techniques and laboratory tests, simulating the technological process of drawing sheet steels with water soluble lubricant PB-18 with a fractal structure, with the addition of nanopowders of copper and bronze. Given optimization of the stretching process of sheet steels using universal software system of finite-element analysis ANSYS Workbenc
    corecore